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The problem

This report deals with computer generated music.
In particular, it discusses two recent approaches
for automated melody composition using machine
learning methods. Apart from melody, music
needs accompaniment (e.g. chords played by
different instruments) and must be performed,
possibly by a synthesizer. Computer generated
music can be used where music is required on-
demand (e.g. video games) or as an aid for human
composers.

History

A comprehensive survey of different approaches
for algorithmic composition can be found in [3].
This section will give a brief overview.

One of the earliest examples of semi-automatic
composition is Mozart’s dice game (see appendix
A), where a minuet is stitched together from
different pre-composed parts depending on the
rolls of two dice. Since the individual parts are
human-made, they are guaranteed musical valid-
ity and appeal, but their random combinations
may sound unnatural.

More sophisticated approaches that were very
popular in the 1970s and 1980s use formal gram-
mars to encode knowledge about music. Non-
terminal symbols may refer to different parts of
a piece and production rules encode the relation-
ship between these parts. Terminals may corre-
spond to pre-made measures, notes with pitch
and duration or chords for accompaniment. A
simple musical grammar in Prolog can be found
in appendix B.

Formal grammar approaches are particularly suit-
able for music with strong formal requirements.
They have been used very successfully for tasks
like harmonization of Bach chorals, see [3] and
[4]. As an illustration, a piece in sonata form
can be expressed as a formal rule ”Sonata →
ABACABA” and the non-terminals A, B, C can
be expanded further. In so-called L-systems, the
same rule is used to expand all instances of a
non-terminal at a time, which creates repetition
and regularities. Variety can be added through
stochastic rules that choose different musical ele-
ments with varying probabilities.

An alternative approach uses Markov models,
where states of the model correspond to musical
events (like notes or chords) and the next event is
chosen according to a probability distribution at
each state. A simple example is given in appendix
C. Markov chains have been used as early as
the 1960s by composers like Iannis Xenakis, but
cannot model higher level structures (like the
sonata form). Some researchers have combined
Markov models with formal grammars in hybrid
approaches.

A very influential composition system was EMI,
developed by David Cope in the 1990s (see [3], [4]
and also appendix A for sound examples). Cope
encoded the structure of different kinds of pieces
(e.g. Nocturnes by Chopin, sonata movements
by Beethoven) as grammars and then used pat-
tern matching on a number of these pieces to
obtain characteristic sequences of intervals that
the composer used frequently. A new piece could
be obtained by stitching together these common
sequences according to the hand-made grammar.
However, EMI required a high level of user inter-
action to classify the sequences correctly.
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Papers

Modern artificial intelligence research moves away
from symbolic approaches like grammars in favor
of machine learning based techniques. These
techniques learn properties of given data. Applied
to music, they can create music in a style given
a lot of examples from that style.

In this section, two papers on melody generation
(see [1] and [2]) will be presented, which employ
two distinct machine learning methods.

Unit selection using deep learning

The authors in [1] follow an approach they
call unit selection: a large database of existing
melodies is divided into groups of consecutive
measures, called units. These units are then con-
catenated in new orders to create novel music.
In order to decide which units get concatenated,
two neural networks are trained.

The database consists of over 4000 melodies, all
transposed to a common key. This dataset is first
augmented by adding transpositions of the same
melodies for all twelve tones and then divided
into units. In the process, previous information
on which units fit together is necessarily lost. To
decide, which units should be concatenated, the
system takes into account information on the se-
mantic similarity of units (determining, whether
two units together make sense musically) and on
note level transitions (determining, whether the
change from one unit to the next sounds natural
or abrupt).

Semantic similarity for melody units is encoded
using a Deep Structured Semantic Model, a special
neural network architecture that was originally
designed for semantic web search. In the orig-
inal application, a DSSM would encode input
words (represented as 1-0-characteristic-vectors
of dictionary words) as continuous vectors. These
continuous vectors represent the input words in
a semantic space, meaning that the distance be-
tween semantic vectors for semantically similar
words like “beach” and “summer” would be very
small, whereas the distance between words with

very different meanings (e.g. “parliament” and
“potato”) would be very large. Applying this
to melody generation, a DSSM is trained to as-
sign similar semantic vectors to units that were
connected in the original dataset.

The DSSM architecture used in [1] is illustrated
in figure 2. The input (in sequential note-by-note
description) is transformed into a bag-of-words
feature vector. Instead of the exact order of
notes, this bag-of-words vector contains informa-
tion like the number of notes with a certain pitch
and duration, the number of rests, counts of two
consecutive pitches etc. (see [1, p. 3]).

To train the DSSM, one first defines the cosine
similarity

sim(A,B) =
AT ·B
|A||B|

(1)

for two real vectors A,B of equal length and then
maximizes the likelihood of the training data
using gradient descent, which is∏

(A,B)

sim(A,B) (2)

where the product is over the semantic vectors
A,B of all consecutive units in the dataset (in
fact, the authors also include semantic vectors
for randomly chosen other units using softmax,
see [1, equation 2]).

Due to the bag-of-words encoding of the input
units, the DSSM does not learn information about
exact note order. Furthermore, as it assigns one
semantic vector per unit, it allows only to com-
pare a unit A with a unit B depending on their
semantic similarity, but cannot say whether unit
A should follow B or vice versa. Therefore, a
second network that can learn information about
sequences of notes is needed. This second net-
work is based on the Long Short-Term Memory
recurrent neural network architecture, which can
learn sequences of events: upon an event, the
LSTM produces an output which also becomes
part of the input when the next event is processed.
In addition, an LSTM stores information about
all previous events in its “cell state”, which is dy-
namically updated while the sequence is received.
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In this application, the LSTM receives music as a
sequence of notes defined by pitch and duration.
After having seen a sequence x of notes, it pre-
dicts a probability distribution over possible next
notes, i.e: its output gives Pr (y|x) for all possible
next notes y. During training, the correct y∗ is
known and backpropagation through time is used
to maximize Pr (y∗|x). After training, the LSTM
predictions can be used to evaluate the quality of
note transitions from one unit to the next: given
a sequence of notes x from previous measures
and y the first note of the next unit, the LSTM
gives the likelihood of the transition from x to y.
See figure 3 for an illustration.

After both networks have been trained, they can
be used to generate new melodies. The first mea-
sure(s) can be chosen randomly or by a human
user. Thereafter, the most likely unit given the
previous measures is chosen by ranking all units
firstly according to the similarity of their seman-
tic vector to the previous measure (see equation
1) and secondly (if they are among the most simi-
lar units) depending on the likelihood of the note
transition. This is computationally demanding,
since it requires comparing with every single unit
in the database each time a new unit gets con-
catenated. Appendix D links to a video with
melodies composed using the approach.

Data-based evolutionary optimization

The technique used in [2] is very different from
that discussed in the previous subsection. The
authors apply an evolutionary optimization algo-
rithm to melodies that are encoded as trees. In
these trees, leafs correspond to notes and rests,
whose lengths depend on their distance to the
root (see figure 4 for an example). The fitness
of these “tree melodies” is defined by several fit-
ness criteria, which are learned from a dataset of
existing melodies.

The optimization starts with an initial set of can-
didate tree melodies that are generated randomly
(since the trees follow a clear syntax expressed
as a context-free grammar, this is done by sim-
ply randomly evaluating the grammar’s rules).
The fittest candidates are then crossbred by in-

terchanging tree nodes between two candidates.
With each exchange, two new candidates are ob-
tained (see figures 6 and 7). This operation is
repeated until the size of the population has dou-
bled. Among the newly generated candidates, the
fittest ones are mutated with a small probability,
which means some of their subtrees are replaced
by randomly generated trees (see figure 8). From
the resulting set of candidates, one retains only
the fittest such that the original population size
is obtained again. The whole procedure is iter-
ated for a number of epochs and the final set of
candidates are the composed melodies.

It remains to discuss what the fitness of a can-
didate is. This should ideally correspond to the
musical quality of the candidates as a human
perceives them. However, the large population
size and number of evolutionary iterations ef-
fectively prohibit the use of user interaction for
determining fitness. Therefore, fitness must be
calculated automatically. To that end, the au-
thors implement 12 different fitness functions,
whose parameters are learned from a training set
of existing melodies. Here, some of these fitness
functions will briefly be summarized.

One fitness function considers a vector represen-
tation of tree melodies that is similar to the bag-
of-words representation from the last subsection.
The vector stores some properties of a melody like
the total number of notes, average pitch intervals,
average durations, rate of syncopated notes, and
more (see [2, p.8]). The fitness of a candidate
melody is calculated as the negative squared dis-
tance of its vector representation to a centroid of
the vector representations of melodies from the
training set.

Another group of fitness functions used in [2] con-
siders a statistical language model learned from
the training set. Similar to the LSTM from the
last subsection, such models consider the prob-
abilities of some symbol occurring after a given
sequence of previous symbols. As symbols, the
authors don’t choose notes (with pitches and du-
rations) but groups of two or three consecutive
pitch intervals and inter-onset durations. For
example, one symbol might stand for “a perfect
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fourth interval of duration 1
8 followed by a major

third of duration 1
2”. Every melody can be decom-

posed into such symbols. This is done for each
melody in the training set. Then, all n-grams
(sequences of n symbols, where n is a parameter
of the function, e.g. 3 or 4) in the training set
are counted to sample their probability. The like-
lihood of a candidate melody under the language
model is the probability of its symbol sequence
given the sampled n-gram probabilities. So for a
symbol sequence S = (s1 . . . s|S|) of some melody:

Pr(S) = b(s1 . . . sn−1)

|S|∏
i=n

c(si−n+1 . . . si−1si),

where b(s1 . . . sn−1) is the fraction of times a
melody in the training set begins with s1 . . . sn−1,
and c(si−n+1 . . . si−1si) is the fraction of occur-
rences of n-gram si−n+1 . . . si−1si compared to
all other n-grams that begin with si−n+1 . . . si−1.
Some additional adjustments are necessary to as-
sign probabilities to n-grams that do not appear
in the training set and to account for melodies of
different length (since under the formula above,
longer melodies necessarily have lower likelihood),
see [2] for details.

Some of the fitness functions chosen by the au-
thors also take into account music theoretic analy-
sis. For instance - given an algorithm that counts
musical segments in melodies - the average num-
ber of segments in the training set is used as
the parameter λ of a Poisson distribution. The
distribution then gives the fitness of a candidate
melody depending on the number of its segments.
Another fitness function takes into account har-
monic categories of notes.

All these individual fitness functions are different
objectives for the evolutionary optimization ex-
plained in the beginning. In order to determine
the overally fittest among the candidates, the
Non-dominated Sorting Genetic Algorithm II is
used. This algorithm first lists all candidates that
are non-dominated (also called pareto-optimal),
where a candidate is dominated, if there exists a
different candidate that has better or equal fit-
ness values for all individual functions and strictly
better fitness for at least one of them. Among

the non-dominated candidates, it prefers those
from low-density regions in the space defined by
the non-dominated candidates (i.e: it prefers can-
didates that are as far apart as possible from
the rest in terms of their fitness function values).
See figure 9 for an illustration. If the number
of non-dominated candidates is not sufficient to
reach the required population size, NSGA-II pro-
ceeds iteratively by selecting candidates that are
non-dominated once the previous non-dominated
candidates have been removed etc.

The authors use an initial population size of 100
candidates and run the evolution for 1000 epochs.
Appendix E links to melodies composed using
the approach, including sound examples.

Conclusion

As machine learning methods become more pow-
erful, they will be increasingly useful for music
generation. The techniques presented in this re-
port - unit selection using neural networks and
tree melodies obtained by evolution - are capa-
ble of learning characteristics of given music and
creating new pieces. However, their subjective
quality varies.

A major obstacle is the lack of clearly defined
quality measures for algorithmic composition ap-
proaches. The authors in [2] only evaluate their
system qualitatively for different choices of fitness
criteria. The authors in [1] also evaluate their
system subjectively and additionally show that
it is likely to choose the correct measures when
tasked to reconstruct a melody beginning from a
held out test set. However, since the technique in
[2] does not use pre-made measures and cannot
take into account a given beginning of a melody,
it cannot be evaluated this way. It is therefore
difficult to objectively compare the effectiveness
of the two approaches.

Finally, as mentioned in the beginning, melody
generation is only one component of successful
music generation. The machine learning meth-
ods presented here might be extended to learn
harmonization, instrumentation etc. from given
music to generate something new.
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A History: Supplementary
material

The original publication of Mozart’s dice game
can be found on IMSLP. An implementation that
runs in a web browser can be found here.

David Cope’s website includes additional infor-
mation on EMI as well as audio samples of EMI’s
compositions. For instance, one can listen to this
piece composed by EMI in a style very similar
Johann Sebastian Bach’s two part inventions for
key instruments. As a reference, compare it to
this original piece by Bach.

Cope’s YouTube channel contains more music
composed by EMI and Emily Howell (an im-
proved version of EMI).

B Formal grammar example

Here is a very small definite clause grammar writ-
ten in Prolog that encodes melodies which consist
of 16 quarter notes and begin and end with a C.
A cadence is encoded by choosing notes from the
tonic (C-Major), then the subdominant, then the
dominant and finally the tonic again.

melody −−> ton ic1 , subdominant ,
dominant , t on i c2 .

t on i c1 −−> [ c1 ] , t , t , t .
t on i c2 −−> t , t , t , [ c1 ] .
subdominant −−> s , s , s , s .
dominant −−> d , d , d , d .
t −−> [ c1 ] .
t −−> [ d1 ] .
t −−> [ e1 ] .
t −−> [ f 1 ] .
t −−> [ g1 ] .
t −−> [ c2 ] .
s −−> [ f 1 ] .
s −−> [ g1 ] .
s −−> [ a1 ] .
s −−> [ b1 ] .
s −−> [ c2 ] .
s −−> [ f 2 ] .
d −−> [ g1 ] .
d −−> [ a1 ] .
d −−> [ b1 ] .
d −−> [ c2 ] .
d −−> [ d2 ] .
d −−> [ g2 ] .

A Prolog interpreter like SWI-Prolog can be used
to enumerate all possible melodies that are ob-
tained using this grammar. In particular, the
query

?− phrase ( melody , [ c1 , e1 , g1
, e1 , f1 , g1 , a1 , g1 , b1 , a1 ,
g1 , d2 , c2 , g1 , e1 , c1 ] ) .

returns “true”. Therefore, the following melody
(among many others) is generated by the gram-
mar:
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C Markov model example

The Markov chain in figure 1 generates a rhythm
as a sequence of note durations.

ˇ “start

ˇ “( ˇ “)

50%

35%

15%30%

40%

30%

30%

30% 40%

Figure 1: A simple Markov chain for rhythm gen-
eration. States correspond to note durations. The
edge descriptions define for each state a probabil-
ity distribution over all successive states. There-
fore, if the last note was an eighth note, with
probability 30% the next note will be a quarter
note or with probability 40% another eighth note
etc.

For example the rhythm

ˇ “ ˇ “( ˇ “) ˇ “) ˇ “ ˇ “( ˇ “(

has likelihood

0.35 · 0.3 · 0.4 · 0.3 · 0.35 · 0.4 ≈ 0.0018

under this Markov chain.

D Unit selection using deep
learning: Supplementary
material

The authors of [1] have created a video showcasing
some music composed using their system (from
4:20 onwards). The video showcases four different
configurations of the system: The unit length
(number of measures per unit) is a parameter and
can be set to 1, 2 or 4 measures. Additionally,
the authors test a system that consists only of an
LSTM and does not use unit selection. Instead,
that system only outputs the most probable note
given the previous sequence of notes.

Input unit (high dim)

Feature vector (9675)

ReLu (128)

ReLu (128)

Semantic vector

Feature extraction

ReLu (128)

Figure 2: The DSSM network architecture for
learning semantic similarity of units.
The input unit (consisting of measures of a
melody) is first transformed into a bag-of-words
feature vector and then processed through sev-
eral hidden layers with leaky rectified linear units
(ReLu, α = 0.001). The output of the upper
ReLu layer is the semantic vector for the input
unit.
The numbers in parentheses are the number of
neurons per layer. For regularization, the network
is trained using 0.5 dropout (in each training it-
eration, half the neurons are deactivated). The
learning rate used is 0.005.
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Hidden
layersCell state

Pr (xn+1∣x )

xn

Figure 3: An overview of the LSTM that learns
note transitions.
The network receives a sequence of notes x =
(x1, . . . , xm) as input, one by one. On input of
the n-th note xn, the output of the network is a
prediction of the (n+ 1)th note, i.e.: Pr (xn+1|x)
for all possible next notes xn+1. This prediction
is looped back into the LSTM when the actual
next note x∗n+1 is received.
Over the course of the whole input sequence, the
LSTM also maintains a cell state, which stores
information on the sequence and can be updated
depending on the current input and previous
prediction. Furthermore, the system used in the
paper is multi-layered, so the output also becomes
input to another LSTM which is again stacked
under another LSTM etc.
The authors choose the length of note sequences
x ad-hoc to be 36 notes. They do not elaborate
on the precise layout of their LSTM (choice of
hidden layers and number of stacked LSTMs).
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E Data-based evolutionary
optimization:
Supplementary material

There exists an online supplement for [2]. This
contains melodies in different styles composed
by their evolutionary technique. I have arranged
some of these melodies in MuseScore here, so they
can be heard.

•

•

•

G E

A

•

•

- D

•

•

G E

•

A r

Figure 4: A melody as a tree.
The tree representation works for melodies in
even rhythm (e.g 4

4) and encodes note durations
using a hierarchy. Each measure is represented
by a subtree connected to the root (here: only
one measure).
A leaf corresponds to a note (G, E, A, . . . ) or
rest (“r”) and an internal node (“•”) divides the
hierarchy into parts of equal length. A leaf on the
first level of the subtree therefore corresponds to
a whole note, on the second level to a half note,
on the third to a quarter note etc. A leaf can
also contain a continuation symbol (“-”), to allow
note durations of a length that is not an inverse
power of two (see the third note in the example).
This is used for dotted notes or tie-overs.

•

•

F •

E A

•

•

B E

E

Figure 5: Another measure represented as a tree.

•

•

•

G E

•

F •

E A

•

•

- D

•

•

G E

•

A r

Figure 6: Crossover operation: A new measure
is obtained by substituting the red node from
figure 5 into the red node from figure 4. Notice
the change of note durations.

•

A •

•

B E

E

Figure 7: Crossover operation: Another new mea-
sure is obtained by substituting the red node from
figure 4 into the red node from figure 5.

•

•

•

D r

•

•

F F

•

A F

•

•

B E

E

Figure 8: Mutation operation: The measure from
figure 7 is mutated by randomly regenerating the
blue node.
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Figure 9: Illustration of the NSGA-II algorithm for two fitness functions, g and f .
The points represent candidates with their respective fitness values. Candidates in red, blue and
green colors are non-dominated (cf. page ), whereas candidates in orange are dominated. The blue
candidate is preferred over the green one, as it has a higher distance to its closest non-dominated
neighbors (in other words, the blue candidate comes from a lower density region of non-dominated
candidates).
Although the illustration shows only a two-dimensional space defined by two fitness functions, the
same concepts apply to higher dimensional spaces for multiple fitness functions.
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