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Zusammenfassung

Diese Arbeit behandelt einige kombinatorische Strukturen und ihre Anwendungen
in der Spieltheorie. Es wird eine Reihe von klassischen Resultaten und aktuellen
Veröffentlichungen besprochen und mit Beispielen erläutert.

Neben einer Einführung in Matroid- und Polymatroidtheorie werden grundlegende
Konzepte aus der kooperativen und nicht-kooperativen Spieltheorie wiederholt. Ins-
besondere werden Anwendungen der Sensitivätsanalyse von Optimierungsproblemen
über Polymatroiden im Hinblick auf Matroid Congestion Games und verwandte
Spiele vorgestellt.

Zusätzlich wird gezeigt, dass die Polymatroidstruktur bestimmter konvexer ko-
operativer Spiele eine effiziente Neuberechnung von Corevektoren erlaubt.

Abstract

This thesis deals with certain combinatorial structures and their applications to game
theoretic problems. As part of this, we will review several classical results and recent
publications on these topics and give illustrating examples.

We will give an introduction to matroid and polymatroid theory as well as
basic concepts from non-cooperative and cooperative games. Our focus will be on
applications of sensitivity results for polymatroid optimization to matroid congestion
games and related concepts.

In addition, we will demonstrate how the polymatroid structure of certain convex
cooperative games can be exploited to recompute core allocations efficiently.
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Chapter 1

Introduction

How should traffic be routed through a road network? How should a bankrupt firm
distribute its remaining estate among its creditors? These are two questions that are
addressed by game theory. In this thesis, we will see that results from combinatorics
can provide elegant answers to these questions. In particular, our aim is to give an
accessible introduction to applications of polymatroid optimization to game theory.
We will start with an overview of all topics that will be covered in later chapters.

Combinatorial optimization is the maximization or minimization of functions
over countable sets. An example is the problem of finding a minimum cost path
in a graph. These optimization problems may be difficult to solve algorithmically
depending on the nature of the objective function and the structure of the underlying
set. For example, when finding a minimum cost path, the objective function is linear:
the cost of a path is the sum of the costs of its elements.

In this thesis, we study optimization problems on structures that arise from
submodular set functions (and their siblings, supermodular set functions). Intuitively,
with a submodular function, adding an element to a larger set does not increase the
function value more than adding the same element to a smaller set. Such behavior is
common in everyday situations: Imagine buying several items of the same type from
the same store. The 20th item will not be more expensive than the 10th, however it
might in fact be cheaper due to discounts offered by the store on large orders.

Two of the structures we will discuss in this thesis are called matroids and
polymatroids. They are generalizations of matrices known from linear algebra and
share variants of the basis exchange property (i.e., replacing a column vector in the
basis of a matrix with another column vector of the same matrix, while retaining
independence, yields another basis). This property will be of great importance when
we look at applications of these structures in game theory.

Game theory is the mathematical study of interactions between self-interested,
rational agents. It was originally a domain of mathematicians and economists, but
solving game theoretic problems increasingly called for efficient algorithms. This
has motivated the study of algorithmic game theory, which lies at the intersection of
game theory and computer science.

Non-cooperative game theory studies scenarios with competing, self-interested
agents that choose among a set of options in order to maximize their personal
payoff. A special case of non-cooperative games are congestion games: Here, the
options available to the agents correspond to resources, e.g. processor cores or
paths through a network. The more agents use a resource, the more costly it
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becomes. The system reaches an equilibrium when none of the agents can improve
their payoff by switching resources. Later, we will see that sensitivity analysis for
polymatroid optimization (i.e., the analysis of changes to optimal solutions under
changes to problem parameters) allows to rule out certain anomalies for a special
case of congestion games related to matroids. Furthermore, it allows us to prove the
existence of “pure” equilibria for a type of non-cooperative games called polymatroid
games, where pure means that the agents do not randomize their choices of resources.

Cooperative game theory deals with situations where several agents work together
to achieve some task and share the cost they experience when doing so. After
completing their task, the agents must allocate the cost among themselves in such a
way that no one is treated unfairly. Finding such a cost allocation can be algorithmi-
cally hard. In this thesis, we are particularly interested in recomputing a valid cost
allocation under small changes to the task parameters.

We will begin by introducing the necessary background from combinatorial
optimization before we move on to its applications in game theory.

Throughout this work, the pronoun “we” shall refer to “the author and the
reader”. In chapters 2 and 3 as well as in sections 4.1 to 4.3, we cover existing
literature. Section 4.4 contains original work.



Chapter 2

From Matrices to Polymatroids

In this chapter, we introduce combinatorial structures that are fundamental for the
later discussion. The definitions and results in this chapter are found in standard
textbooks like [8], [9], [16] and [22].

2.1 Submodular functions

We begin with two types of set functions that will appear frequently in this work.

Definition 2.1 (Sub- and supermodular functions)
Let N be a finite set and 2N its power set. A function f : 2N → R is called
submodular if for all A,B ⊆ N ,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.1)

and supermodular if

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B). (2.2)

As mentioned in the introduction, sub- and supermodular functions appear
frequently in mathematical economics and can be interpreted intuitively: Consider
a function that is both submodular and supermodular, i.e., the inequalities above
hold with equality. Such a function is called modular and it assigns the same values
to elements of N , no matter which subset of N they are part of. In other words,
the valuation of set A plus the valuation of set B are exactly the valuations of the
elements of both sets combined, counting duplicate elements twice. Then sub- and
supermodular functions are two relaxations of this property.

Another intuition is given by the following lemma: a function is submodular
(supermodular) if adding an element to a set adds more (less) valuation than adding
the same element to a superset of that set.

Lemma 2.2
For a finite set N , f : 2N → R is submodular if and only if for all S ⊆ L ⊆ N and
n ∈ N \ L,

f(S ∪ {n})− f(S) ≥ f(L ∪ {n})− f(L). (2.3)

The converse inequality holds if f is supermodular.

3



2.1. SUBMODULAR FUNCTIONS 4

Proof (see also Theorem 44.1 in [22])
We focus on the submodular case and note that the supermodular case can be proved
similarly. For (2.1) =⇒ (2.3), observe that for all S ⊆ L ⊆ N, n ∈ N \L by choosing
A = S ∪ {n} and B = L equation (2.1) gives

f(S ∪ {n}) + f(L) ≥ f(S ∪ {n} ∪ L) + f((S ∪ {n}) ∩ L)

⇔ f(S ∪ {n}) + f(L) ≥ f(L ∪ {n}) + f(S)

⇔ f(S ∪ {n})− f(S) ≥ f(L ∪ {n})− f(L)

For (2.3) =⇒ (2.1), let A,B ⊆ N . If A = ∅, we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

⇔ f(∅) + f(B) ≥ f(B) + f(∅)

and if A = N , we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

⇔ f(N) + f(B) ≥ f(N) + f(B)

(similarly for B = ∅ or B = N). Furthermore, if B ⊆ A, we get

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

⇔ f(A) + f(B) ≥ f(A) + f(B)

and similarly for A ⊆ B.
Thus, we can now assume A,B ⊂ N to be non-empty and A * B,B * A. Let

A4B = (A\B)∪ (B \A) be the symmetric difference of A and B. Then |A4B| ≥ 2.
We prove (2.1) by induction for |A4B| ≥ 2.

Assume |A4B| = 2 and let P = A ∩ B, then we can write A = P ∪̇ {a} and
B = P ∪̇{b} for elements a ∈ A, b ∈ B. Now, choosing S = P, n = b and L = P ∪{a},
our assumption (2.3) yields

f(P ∪ {b})− f(P ) ≥ f(P ∪ {a} ∪ {b})− f(P ∪ {a})
⇔ f(P ∪ {b}) + f(P ∪ {a}) ≥ f(P ∪ {a} ∪ {b}) + f(P )

⇔ f(P ∪ {b}) + f(P ∪ {a}) ≥
f((P ∪ {b}) ∪ (P ∪ {a})) + f((P ∪ {b}) ∩ (P ∪ {a}))

⇔ f(B) + f(A) ≥ f(B ∪ A) + f(B ∩ A)

For the induction step, assume |A4B| = i+ 1, i ≥ 2. Then we have |A \B| ≥ 2
or |B \ A| ≥ 2. Without loss of generality assume the former and let n ∈ A \B so
that we can apply the induction hypothesis and get

f(A \ {n}) + f(B) ≥ f((A \ {n}) ∪B) + f((A \ {n}) ∩B)

⇔ f(A \ {n}) + f(B) ≥ f((A \ {n}) ∪B) + f(A ∩B)

⇔ f(A ∩B)− f(B) ≤ f(A \ {n})− f((A \ {n}) ∪B) (♦)

In addition, choosing S = A \ {n}, L = B ∪ (A \ {n}) and applying (2.3) gives us

f((A \ {n}) ∪ {n})− f(A \ {n}) ≥ f(B ∪ (A \ {n}) ∪ {n})− f(B ∪ (A \ {n}))
⇔ f(A)− f(A \ {n}) ≥ f(B ∪ A)− f(B ∪ (A \ {n}))
⇔ f(A \ {n})− f(B ∪ (A \ {n}) ≤ f(A)− f(B ∪ A) (♣)
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Combining the two, we get

f(A ∩B)− f(B)

≤ f(A \ {n})− f((A \ {n}) ∪B) by (♦)

≤ f(A)− f(A ∪B) by (♣)

and we are done. �

2.2 From matrices to matroids

We now look at at a structure called “matroid” that generalizes matrices from linear
algebra and explain its relationship with submodular functions.

Consider any matrix with real-valued entries A. From linear algebra we know
several key facts about sets of column vectors of A. For example, every subset of
a set of independent column vectors is also independent. Also, there are maximal
independent sets of column vectors that are called bases. The rank of a matrix is
the dimension of the span of its column vectors and thus the size of its bases.

A matroid is a structure containing a finite set E and subsets of that set which
are called “independent”. Independent sets that are inclusion-wise maximal are
called “bases”. It is also possible to define a rank function on the subsets of E. Thus,
matroids are a generalization of the aforementioned concepts from linear algebra.

Definition 2.3 (Matroid)
Let E be a finite set and I a family of subsets of E, so that

(I1) ∅ ∈ I

(I2) I1 ⊆ I2 ∈ I =⇒ I1 ∈ I

(I3) I1, I2 ∈ I and |I1| < |I2| =⇒ ∃e ∈ I2 \ I1 : I1 ∪ {e} ∈ I

We call (E, I) a matroid, E its ground set and the I ∈ I its independent sets.
An element I ∈ I is called a basis if there is no J ∈ I with I ⊂ J . Thus,

the set of bases of a matroid is given by

B = {I ∈ I | ∀J ∈ I : I ⊆ J =⇒ I = J}.

Furthermore, we define the rank function of a matroid to be

p : 2E → N, p(X) = max{|I| | I ∈ I, I ⊆ X}

and the rank of the matroid as p(E).

Example 2.4
As explained above, we can think of the column vectors of a matrix as elements of
the ground set E of a matroid and of the linearly independent sets of these vectors as
members of I. For instance

A =

(
1 0 3
0 2 1

)
∈ R2×3, so E =

{(
1
0

)
,

(
0
2

)
,

(
3
1

)}
.
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Then p(E) = 2 and

B =

{{(
1
0

)
,

(
0
2

)}
,

{(
1
0

)
,

(
3
1

)}
,

{(
0
2

)
,

(
3
1

)}}
.

Similar to bases in linear algebra, we can exchange elements between the bases of
a matroid to obtain a new basis.

Lemma 2.5
For pairs of bases B1, B2 ∈ B of a matroid, it holds that |B1| = |B2| and for an
element e1 ∈ B1 \B2 there exists e2 ∈ B2 \B1 so that (B1 \ {e1}) ∪ {e2} ∈ B.

Proof
B1 and B2 must be of equal size, otherwise assume |B1| < |B2|. Then by (I3) there
is e ∈ B2 \B1 so that B1 ∪ {e} ∈ I, which contradicts that B1 is a basis.

Now, |(B1 \ {e1})| < |B2| and again e2 exists by (I3). �

The next lemma establishes the connection to submodular functions, which were
discussed in the previous section. In fact, instead of defining matroids via their
independent sets, it is possible to equivalently define matroids via functions satisfying
the properties in this lemma, see e.g. [8].

Lemma 2.6
The rank function of a matroid has the following properties:

(Subcardinality) ∀X ⊆ E : 0 ≤ p(X) ≤ |X|

(Monotony) X ⊆ Y ⊆ E =⇒ p(X) ≤ p(Y )

(Submodularity) p is submodular

Proof (see also Lemma 5.1.3 in [8])
(Subcardinality) and (Monotony) clearly hold by the definition of p. Thus, it remains
to show that p fulfills the condition in equation 2.1.

To that end, let A,B ⊆ E and take a subset F ⊆ A ∩ B that is maximally
independent, i.e., F ∈ I and there is no J ∈ I with J ⊆ A∩B and F ⊂ J . Likewise,
let N ′ be a maximal independent subset of A ∪B. Through repeated applications of
(I3), we can add elements of N ′ to F to obtain a maximal independent subset N of
A ∪B with F ⊆ N .

For these sets we have |F | = p(A ∩B) and |N | = p(A ∪B) by the definition of p.
Observe also that p(A) ≥ |N ∩ A| since N ∩ A ∈ I, and likewise p(B) ≥ |N ∩B|.

Now note that |N ∩ A|+|N ∩B| = 2|N ∩ A ∩B|+|(N ∩ A) \B|+|(N ∩B) \ A|.
Furthermore, N ∩ A ∩B = F . Also, ((N ∩ A) \B) ∪̇ ((N ∩B) \ A) = N \ F , since
every element of N \F comes from either A \B or B \A (otherwise, it would already
be included in F ). Thus, we get

p(A) + p(B) ≥ |N ∩ A|+ |N ∩B| = 2 |F |+ |N \ F |
= |F |+ |N | = p(A ∩B) + p(A ∪B). �

Matroids and similar structures are frequently used in combinatorial optimization.
In the next section, we will see that it is possible to use a greedy algorithm to
optimize linear objective functions over bases of a matroid.
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2.3 Linear optimization over matroids

Optimization is the problem of finding some element x of a set of feasible elements
X that minimizes or maximizes the value of an objective function f . Depending on
the properties of X and f (e.g. whether elements in X are real- or integer-valued),
there are different approaches to solve an optimization problem.

A frequently occurring special case of optimization is linear programming , where
the set X consists of solutions to linear inequalities and f is a linear function. As
there are efficient procedures to solve linear programming problems, they are used
in many domains. In particular, linear programs occur frequently in game theory.
There is also a geometric interpretation of the feasible elements of linear programs:

Definition 2.7 (Polyhedron and polytope)
Let A ∈ Rm×n, b ∈ Rm a matrix and a vector respectively. Then the set of
feasible elements

P = {x ∈ Rn | Ax ≤ b}

of the associated linear program is called a polyhedron. A bounded polyhedron is
called polytope.

(a) Bounded case (b) Unbounded case

Figure 2.1: Two polyhedra. They are defined by the linear inequalities:
x1 + x2 + x3 ≤ 1, x1 ≥ 0, x2 ≥ 0, and for 2.1a only: x3 ≥ 0. The redly shaded
area in 2.1b illustrates the polyhedron reaching into infinity.

In the remainder of this section, we will look at linear programs whose feasible
regions have matroid structure. We begin by motivating this area of focus.

Example 2.8 (Minimum spanning tree)
A well known problem in optimization consists of finding a minimum weight spanning
tree for a given connected undirected graph G = (V,E) with weights w : E → N

associated with each edge.
In terms of our formulation of the optimization problem above, the set of feasible

elements X is the set of all spanning trees of G (i.e., all connected, circle-free
subgraphs (V, S ⊆ E) so that for all v ∈ V there exists some e = {p, q} ∈ S with
v = p or v = q) and we want to minimize f((V, S)) =

∑
e∈S w(e) (the sum of weights

of the edges in the spanning tree) over all spanning trees (V, S) ∈ X.
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We know that the problem can be solved by Kruskal’s algorithm (see e.g. [3]),
which starts with an empty set S and iteratively adds edges of lowest possible weight
so that the resulting graph remains circle-free. The algorithm terminates after adding
|V | − 1 edges with a minimum weight spanning tree of G. See Figure 2.2 for an
example.

a b

c d

5

2
3

4
1

6

Figure 2.2: A graph with a minimum spanning tree. Kruskal’s algo-
rithm adds, in order, the edges of weight 1, 2 and 3. Afterwards it terminates,
as adding another edge would introduce a circle in the subgraph. Thus, the
total sum of weights in the spanning tree is 6.

Kruskal’s algorithm is an example of a greedy algorithm, since in each iteration
it chooses a locally optimal element (the edge with lowest cost among all remaining
edges) to ultimately arrive at a globally optimal solution (a minimum weight spanning
tree).

We also observe that the minimum spanning tree problem has matroid structure:
Take E to be the the ground set of the matroid and choose as members of I the edge
sets of all subgraphs of G = (V,E) that are circle free. Then the maximal independent
sets of (E, I) correspond to spanning trees of G. Finding a minimum weight spanning
tree of G thus translates to the problem of finding a minimum weight basis of (E, I).

Generalizing from the previous example, we may consider the problem of opti-
mizing a linear function over the bases of a matroid, namely:

Problem 2.9 (Linear optimization over bases of a matroid)
Let (E, I) be a matroid with bases B and w : E → R a weight function. Find a
base B ∈ B such that

∑
e∈B w(e) is minimal.

Note that Problem 2.9 can be written as an integer linear program: the objective
function B 7→

∑
e∈B w(e) is a linear map of the characteristic vector χB ∈ {0, 1}E

of B (where (χB)e = 1 if e ∈ B and (χB)e = 0 otherwise). Additionally, we can
reformulate the constraint that feasible solutions are bases of a matroid as linear
inequalities so that the feasible region becomes{

x ∈ {0, 1}E
∣∣∣∣∣ ∑
e∈X

xe ≤ p(X) ∀X ⊂ E,
∑
e∈E

xe = p(E)

}
, (2.4)

where p is the rank function of (E, I).
Thus, it is not immediately obvious how Problem 2.9 can be solved efficiently.

However, it turns out that there is a very elegant solution thanks to the problem’s
matroid structure, see Algorithm 1.
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Algorithm 1 Greedy algorithm for Problem 2.9, see e.g. section 5.5.2 in [8]

Input: (E, I) a matroid, B its bases and w : E → R an associated weight function
Output: B ∈ B with

∑
e∈B w(e) minimal

1: B ⇐ ∅
2: [e1, . . . , en]⇐ a list of all elements in E such that w(e1) ≤ w(e2) ≤ · · · ≤ w(en)
3: i⇐ 1
4: while i ≤ n do
5: if B ∪ {ei} is independent then
6: B ⇐ B ∪ {ei}
7: end if
8: i⇐ i+ 1
9: end while

Theorem 2.10 (Correctness of the matroid greedy algorithm)
The output B of algorithm 1 is a basis of (E, I) of minimal weight.

Proof (see also Theorem 40.1 in [22])
The algorithm only adds elements such that the resulting set remains independent
(step 5). When the loop terminates, by (I2) there is no element that may be added
to retain independence. Thus there is no strict superset of B also in I, so B is a
basis.

It remains to show optimality. Denote by Bi the set B at the beginning of the
ith iteration of the algorithm. Furthermore, let Bmin be the set of bases of minimal
weight. We will show that if Bi ⊆ Bmin for a Bmin ∈ Bmin and 1 ≤ i < n, then also
Bi+1 ⊆ B′min for some B′min ∈ Bmin. This will give us, with i = n− 1, that B is of
minimal weight.

Thus, fix some i and choose a Bmin ∈ Bmin so that Bi ⊆ Bmin. If B ∪ {ei}
is not independent, then Bi = Bi+1 ⊆ Bmin. If, on the other hand, ei ∈ Bmin,
then Bi ∪ {ei} = Bi+1 ⊆ Bmin and we have the claim. Otherwise, ei /∈ Bmin and
by repeatedly applying (I3) (starting with I1 = Bi ∪ {ei} = Bi+1, I2 = Bmin and
iterating until I1 cannot be enlarged anymore) we get a basis B′ ⊇ Bi+1. By its
construction, there is an element x ∈ Bmin \ Bi such that B′ = Bmin \ {x} ∪ {ei}.
But ei has minimal weight among elements that can be added to Bi while preserving
independence, so w(ei) ≤ w(x) and thus

∑
e∈B′ w(e) ≤

∑
e∈Bmin w(e). Therefore, B′

is a basis of minimal weight and we are done. �

Regarding runtime, the only loop in Algorithm 1 runs exactly |E| times but
requires an oracle to check for independence in step 5 and a list of elements in E
sorted by weight. A similar algorithm can be used to find a basis of maximal weight:
in that case, the list in step 2 should be in non-increasing order. Also note that the
problem of finding minimal (maximal) independent sets can be solved by deleting
elements with positive (negative) weight and then applying Algorithm 1.
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2.4 From matroids to polymatroids

There are many generalizations and variations of matroids that can be obtained e.g.
by modifying the constraints in the independence axioms or by using different kinds
of rank functions. In this section, we look at polymatroids, which are structures
where the subcardinality of the rank functions is relaxed.

Definition 2.11 (Polymatroid axioms)
Let E be a finite set and p : 2E → R+ a function over subsets of E satisfying

(Normalization) p(∅) = 0

and (Monotony) and (Submodularity) from Lemma 2.6.
We call (E, p) a polymatroid and p its rank function. If p is in fact integer-valued
(so p : 2E → N), we call (E, p) an integral polymatroid.

We will assume that the rank function is given by an oracle, i.e., some efficient
procedure that calculates p(X) for X ⊆ E. Although we introduced polymatroids
through their rank functions, the concepts of independence and bases from matroids
still carry over in some way. The rank function can be used to define a polyhedron,
similarly to the one describing the feasible solutions of linear optimization over
matroid bases (see equation 2.4). We consider elements of that polyhedron to be
independent and elements on a certain extreme face of the polyhedron to be bases
(see Figure 2.3 for an illustration).

From now on, we will use a shorthand notation common in literature, where for
a vector x = (xe)e∈E ∈ RE and a subset X ⊆ E we write x(X) for the sum of vector
elements corresponding to members of X, so

x(X) =
∑
e∈X

xe.

Definition 2.12 (Polymatroid (base) polytope)
Let (E, p) be a polymatroid. The polymatroid polytope associated with (E, p) is
the set

P (p) =
{
x ∈ RE

+

∣∣ x(X) ≤ p(X) ∀X ⊆ E
}

and the corresponding polymatroid base polytope is

B(p) = {x ∈ P (p) | x(E) = p(E)} .

If (E, p) is an integral polymatroid, the sets P (p) and B(p) are instead defined
with vectors of natural numbers x ∈ NE.

Note that P (p) and B(p) are upper bounded by the rank function and lower
bounded by 0 in all dimensions, so they are indeed polytopes.

There is also something akin to the basis exchange property from matroids for
the components of a vector in the polymatroid polytope. For some such vectors,
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(a) x1 + x2 ≤ 3 (b) x1 + x2 ≤ 4 (c) x1 + x2 ≤ 5

Figure 2.3: Three polymatroid polyhedra and their associated base
polytopes. They are obtained from the inequalities: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3
together with the inequality given under the respective subfigure. Areas of
all colors constitute the polymatroid polytope, while the base polytopes are
marked blue.

there are components whose value cannot be increased without exceeding the bounds
of the polytope. These components are called saturated . They may only be increased
after the value of another component is reduced. For example, in the polytopes in
Figure 2.3, any point in the greenly shaded areas may be moved slightly up or to
the right (thus having its second or first component increased) without leaving the
bounds of the polytope. Points on the red lines have one saturated component, while
points on the blue lines (the base polytopes) are saturated in all their components.

Definition 2.13 (Saturated components, exchangeable pairs)
Let (E, p) be a polymatroid, P (p) the associated polytope and x ∈ P (p) a vector
in the polytope. Additionally, denote by χe ∈ RE

+ the characteristic vector for an
element e ∈ E (so (χe)e = 1 and (χe)f = 0 for all e 6= f ∈ E). Then the set of
saturated components of x is given by

sat(x) = {e ∈ E | x+ αχe /∈ P (p) ∀α > 0} .

For x and e ∈ sat(x), the set

dep(x, e) = {e′ ∈ E \ {e} | ∃α > 0: x+ α(χe − χe′) ∈ P (p)}

contains all e′ ∈ E so xe′ can be reduced to increase xe. The tuples (e, e′),
e′ ∈ dep(x, e), are called exchangeable pairs associated with x.

By definition, sat(x) = E for a vector x ∈ B(p), so all components of a vector
in the basis polytope are saturated. Moving from x to another x′ ∈ B(p) therefore
requires reallocating some value between the exchangeable pairs of x. The following
lemma states that for two bases of a polymatroid, mutually exchangeable pairs of
components always exist. We refer to [17] for its proof.

Lemma 2.14 (Lemma 3.17 in [17], see also [16])
Let (E, p) be a polymatroid and x, y ∈ B(p) two vectors in its base polyhedron. Then
for all components e ∈ E with xe > ye, there exists a component f ∈ E with xf < yf
and an α ∈ R>0 such that

x− α(χe + χf ) ∈ B(p) and y + α(χe − χf ) ∈ B(p).



2.4. FROM MATROIDS TO POLYMATROIDS 12

Polymatroid polytopes have some very desirable properties in optimization. As
for matroids, it is possible to optimize a linear function over a polymatroid using
a greedy algorithm, as we shall see shortly. Later, we will encounter optimization
problems over polymatroids with convex separable objective functions. These can
also be solved efficiently using an algorithm described in section 2.5.

The final theorem in this section contains a result on the complexity of computing
an element of a polymatroid base polytope. This will be relevant when we discuss core
allocations in cooperative games. The theorem is also essential for the polymatroid
greedy algorithm.

Theorem 2.15
Let (E, p) be a polymatroid, |E| = n, and π = (e1, . . . , en) any permutation of
elements in E. Also, write Eπ

i = {e1, . . . , ei} for all 1 ≤ i ≤ n and Eπ
0 = ∅.

Define a vector x ∈ RE by

xei = p(Eπ
i )− p(Eπ

i−1)

for all 1 ≤ i ≤ n. Then x ∈ B(p).

Proof (see also Lemma 5.5.10 in [8])
Due to (Normalization) and (Monotony), we have that p is nonnegative and nonde-
creasing and thus xe ≥ 0 for all e ∈ E. Additionally, we obtain

x(E) =
n∑
i=1

xei =
n∑
i=1

p(Eπ
i )− p(Eπ

i−1) = p(E)− p(∅) = p(E),

where the final equality follows from (Normalization).
Thus, it remains to show that x(X) ≤ p(X) for all X ⊂ E. We proceed by

induction on the size of X. To begin, let |X| = 1. Then X = {ej} for some 1 ≤ j ≤ n
and

x(X) = xej = p(Eπ
j )− p(Eπ

j−1) ≤ p({ej})− p(∅) = p(X),

where the inequality follows from the submodularity of p (cf. equation 2.3).
Now, let |X| = i + 1, i ≥ 1, and choose the subset X ′ = X \ {ej} obtained by

removing from X the element ej with the largest index j among its elements. Thus,
|X ′| = i so that we can apply the induction hypothesis (IH): x(X ′) ≤ p(X ′). We
get

x(X) = x(X ′) + xej
(IH)

≤ p(X ′) + xej = p(X ′) + p(Eπ
j )− p(Eπ

j−1).

But note that
p(X ′) + p(Eπ

j ) ≤ p(X) + p(Eπ
j−1)

by the submodularity of p (cf. equation 2.1, choosing A = X and B = Eπ
j−1) and we

are done. �

Theorem 2.15 gives an efficient algorithm to compute one of up to |E|! (the
number of permutations of E) vectors in the polymatroid base polytope: Provided
we can compute p(X) for all X ⊆ E efficiently, we can compute the elements xei one
by one (potentially using dynamic programming) after fixing a permutation π. Both
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operations take time linear in |E|. We will use this result later when discussing core
allocations for cooperative games with submodular cost functions.

The theorem also admits an algorithm that can be used for linear optimization over
a polymatroid base polytope. Let w : E → R be a weight function and

∑
e∈E w(e)xe

shall be minimized for x ∈ B(p). Now let π = (e1, . . . , en) be a permutation of
E, such that w(e1) ≤ · · · ≤ w(en). It can be shown that the vector x∗ ∈ B(p)
constructed with π according to the formula in Theorem 2.15 is optimal for this
minimization problem. The proof proceeds by constructing an appropriate dual
problem and a corresponding feasible solution y so that the respective objective
values for x∗ and y are equal, see e.g. [8] or [22].

Intuitively, the algorithm is “greedy”, since for all 1 ≤ i ≤ n it maximizes x∗(X)
for the cheapest subsets X ⊆ E of size |X| = i. Or in other words: a total of p(E)
must be assigned to x∗, so the algorithm allocates as much as possible to components
x∗e with low w(e) while preserving the submodularity constraints x(X) ≤ p(X) for
all X ⊆ E.

Furthermore, by ordering the elements of E by decreasing weight, the same
algorithm can be used for maximization. When optimizing over the whole polymatroid
polytope (as opposed to the base polytope), one can ignore e ∈ E with negative or
positive weight (for maximization or minimization respectively) and then apply the
algorithm.

2.5 Convex separable minimization over

polymatroids

In later chapters, we will encounter minimization problems involving convex separable
functions and polymatroid base polytopes. This means that the set of feasible
elements is a polymatroid base polytope and the objective function is a sum of
univariate convex cost functions per element of the ground set. Lemma 2.16 states
the problem formally.

The so-called “decomposition algorithm” introduced in [11] can be used to
maximize a concave separable function over a polymatroid base polytope efficiently.
Minimizing a convex separable function can be done similarly, since a function f is
minimized by maximizing −f and f is convex if and only if −f is concave.

We now briefly give the optimality conditions for minimizing a convex separable
function over a polymatroid and sketch the decomposition algorithm. For a rigorous
explanation, see [11] and [9].

Lemma 2.16 (Optimality conditions, Theorem 8.1 in [9])
Let (E, p) be a polymatroid, ce : R+ → R convex functions for all e ∈ E and c+

e , c
−
e

their respective right and left derivatives. Define by

f : RE
+ → R, f(x) =

∑
e∈E

ce(xe)

a convex separable function to be minimized for elements x ∈ B(p).
Then x∗ ∈ B(p) is optimal if and only if for all exchangeable pairs (e, f) associated

with x∗ it holds that
c−f (x∗f ) ≤ c+

e (x∗e).
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It can be easier to think of ce as being differentiable, so that c+
e and c−e coincide.

Note that even if ce is not differentiable, the right and left derivatives always exist
because ce is a convex function in one variable (see e.g. [21]). Intuitively, Lemma
2.16 says that x∗ is optimal when the objective function cannot be decreased by
transferring some amount from one vector component of x∗ to another (while staying
inside B(p)). Clearly, the condition implies that x∗ is a local optimum. For the proof
of global optimality we refer to [11] and [9].

The decomposition algorithm can be used to find x∗. Roughly speaking, the
algorithm proceeds by a divide-and-conquer approach: Firstly, f is minimized for
y ∈ RE

+ under the sole constraint y(E) ≤ p(E). The algorithm finds a maximal
element v ∈ B(p) such that v ≤ y and proceeds to partition E into saturated and
non-saturated components of v. For this partition, two subproblems are constructed
by restricting f to the saturated and non-saturated components respectively and
the algorithm is then applied recursively. The recursion ends when there are only
saturated components in a subproblem.

This algorithm runs in time polynomial in |E|, provided the single constraint
problem in the first recursive step can be solved efficiently. For the full statement
and analysis of the algorithm we refer again to [11] and [9].



Chapter 3

From Congestion Games to
Polymatroid Games

Congestion games provide a mathematical model of how self-interested actors, called
players, compete for resources. In this chapter, we introduce the game theoretic
framework for congestion games and a special case related to matroid theory called
matroid congestion games. Additionally, we discuss some major results for matroid
congestion games and a generalization called polymatroid games, involving sensitivity
analysis over polymatroids.

The concepts and results in this chapter are from various sources which are
indicated at the beginning of each section.

3.1 Non-cooperative games

This section includes the necessary background from game theory for the following
discussion. The material is found in standard textbooks on the topic, e.g. [18]. To
begin, we formalize the intuitive notion of “game” and illustrate the formalization
with some examples.

Definition 3.1 (Strategic game)
A strategic game consists of a tuple Γ = (N, (Si)i∈N , (ui)i∈N ) where N is a finite
set of |N | = n players participating in the game and Si is a finite set of strategies
available to player i. Denote by S = S1×· · ·×Sn all combinations of strategies of
all players. Then ui : S → R describes player i’s payoff under each combination.

A match of the game corresponds to choices s = (s1, . . . , sn) ∈ S for all
players and ui(s) is player i’s payoff after the match. We assume that players
aim to maximize their payoff.

Example 3.2 (Rock, Paper, Scissors)
The popular “Rock, Paper, Scissors” provides a simple example of how a real-life
game can be represented as a strategic game.

There, we have N = {1, 2} players who can choose among the same strategies
S1 = S2 = {Rock,Paper, Scissor}. Payoffs are assigned symmetrically: if the players
choose the same strategy, they both get payoff 0. Otherwise, rock beats scissor, paper

15
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beats rock and scissor beats paper, meaning that the winning player gets payoff 1 and
their opponent −1. For instance, u1((Paper,Rock)) = 1.

Example 3.3 (Prisoner’s dilemma)
In this famous example, two prisoners are being questioned separately and have the
option to either cooperate with their partner and stay silent or defect by confessing
their crimes. A prisoner that confesses may get a shorter sentence if their partner
stays silent, but if both prisoners cooperate their sentences are shorter than if they
both confess.

Formally, we again have N = {1, 2} players who can choose among strategies:
S1 = S2 = {Cooperate,Defect}. The following table gives the payoffs to each prisoner
in each possible match. Entries (i, j) correspond to payoff i for player 1 and payoff j
for player 2. We can interpret a payoff −y as a sentence of y years. For example,
u2((Defect,Cooperate)) = −5, meaning that prisoner 2 is sentenced to 5 years if
they cooperate and prisoner 1 defects.

Prisoner 2

Prisoner 1
Cooperate Defect

Cooperate (-2,-2) (-1,-5)
Defect (-5,-1) (-4,-4)

In the previous Example 3.3, the players can always increase their individual
payoff by switching their own strategy (assuming their partner’s strategy stays the
same), unless both choose the “Defect” strategy. This motivates the concept of an
equilibrium: if both prisoners confess, neither prisoner has an incentive to cooperate
with their partner, because it will decrease their own payoff.

Observe that in Example 3.2, no pair of strategies results in such an equilibrium,
because there is always one player who can increase their payoff by switching strategies.
To adequately define an equilibrium for Example 3.2, the players must be allowed to
play randomized strategies, i.e., to choose a strategy according to some probability
distribution over their Si.

Definition 3.4 (Mixed strategy, best response, Nash equilibrium)
A mixed strategy for player i is a probability distribution xi = (xis)s∈Si over Si.
So xis ≥ 0 is the probability of player i playing s ∈ Si and

∑
s∈Si x

i
s = 1. A mixed

strategy xi is called pure, if xis = 1 for some s ∈ Si and xiw = 0 for all other
s 6= w ∈ Si.

Let Xi be the set of all mixed strategies of player i and X = X1 × · · · ×Xn

the set of all profiles of mixed strategies. The expected payoff for player i under
profile x ∈ X is given by the sum of payoffs for player i of all matches multiplied
by their probability under x, so

Ui(x) =
∑

s=(s1,...,sn)∈S

(
ui(s) ·

∏
j∈N

xjsj

)
.
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A strategy xi is called a best response for player i to a profile of opponents’
strategies (x1, . . . , xi−1, xi+1, . . . , xn) if there is no better alternative strategy that
player i could choose, meaning that for all yi ∈ Xi,

Ui((x
1, . . . , xi, . . . , xn)) ≥ Ui((x

1, . . . , yi, . . . , xn)).

A profile x ∈ X is called Nash equilibrium if every player’s strategy is a
best response to their opponents’ strategies in that profile. A Nash equilibrium is
called pure, if every player’s strategy in the equilibrium is pure.

Intuitively, a Nash equilibrium is a profile where no player can increase their
payoff by switching to another strategy. It is not hard to see that for Example 3.2,
a Nash equilibrium consisting of mixed strategies is given by the profile in which
both players play each of their strategies with equal probability 1

3
. Indeed, a seminal

result by Nash states that such an equilibrium always exists. However, computing it
may be hard.

Theorem 3.5 (Nash’s Theorem)
Every strategic game has at least one Nash equilibrium.

3.2 Atomic congestion games

In the remainder of this chapter, we focus on non-cooperative games where players
compete for resources. We begin with a particular type of these, called atomic
congestion game. See again [18] and also [20]. Intuitively, in an atomic congestion
game, players choose between different combinations of resources and each resource
has a cost proportional to the number of all players that claim it. The game is called
“atomic”, because players are elements of finite sets. We will see another type of
congestion game later.

Definition 3.6
An atomic congestion game is a tuple ΓACG = (N,E, (Si)i∈N , (ce)e∈E) where N is
a finite set of players, E a finite set of resources, strategies are sets of resources
(so Si ⊆ 2E for every player i) and ce : N → Z is a cost function for resource
e ∈ E.

A profile of pure strategies s = (s1, . . . , sn) ∈ S1×· · ·×Sn admits a congestion

ne(s) = |{i | e ∈ si}|

on each resource e ∈ E, i.e., exactly the number of players that use e in profile s.
Now, ce(ne(s)) is the cost of using resource e in one’s strategy under profile s.

The payoff ui for player i is the negative total sum of costs for each resource
in their chosen strategy, so ui(s) = −

∑
e∈si ce(ne(s)).

Example 3.7 (Network congestion games)
We can use congestion games to model the interaction of actors who want to find the
fastest path through a network. The network is given by a directed graph G = (V,E).
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Each player has an origin and destination node in V and tries to find paths of
minimum cost between these nodes. Thus, edges correspond to resources and strategies
are paths in the graph. Every edge has an associated cost that depends on the
congestion on that edge. Figure 3.1 shows an example network.

a b

e

c d

2x

2x

3 x2

2

1 + x

x

Figure 3.1: A network congestion game. The edges are labeled with
their cost as a function of the congestion on that edge. Players may have
different origins and goals and choose paths between them. For instance, some
player may want to reach d from a and another b from e. If two players use
the edge e→ d, the congestion on that edge is 2.

Network congestion games can be used to model various real world problems like
traffic control or centralized package routing in computer networks.

The following central result states that we can find a pure Nash equilibrium for
any atomic congestion game by repeatedly applying improvement steps. Such a step
for a profile of pure strategies s = (s1, . . . , sn) ∈ S1 × · · · × Sn is a new strategy
s′i ∈ Si for some player i, so that i strictly reduces their total cost (i.e., increases
their payoff) by playing the new strategy over their previous choice. Formally:
ui(s) < ui((s1, . . . , s

′
i, . . . , sn)). Note that the improvement step that yields minimal

total cost for player i is, by definition, a best response.

Theorem 3.8 (Sequences of improvement steps)
Every sequence of improvement steps in every congestion game is finite and
terminates in a pure Nash equilibrium.

Proof (Sketch, see also [20] and [18])
For profiles of pure strategies s ∈ S1 × · · · × Sn, define a potential function

Ψ(s) =
∑
e∈E

ne(s)∑
i=1

ce(i). (3.1)

It can be shown that each improvement step for any player reduces the value of
the potential function by at least 1. Note that S1 × · · · × Sn is finite, so Ψ has a
minimum. Therefore, any sequence of improvement steps must be finite. Once no
more improvement steps are possible, the game has - by definition - reached a pure
Nash equilibrium. �

Computing a Nash equilibrium through improvement steps may take a long time,
because of the number of such steps required. It can be shown (see [6]), that finding
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pure Nash equilibria in atomic congestion games through improvement steps is as
hard as solving any problem in a class called “local search problems”. For example,
finding a maximum cut in a graph by repeatedly exchanging nodes between the two
sets constituting the cut also belongs to this class. Importantly, through reductions
to certain local search problems, it is possible to construct a congestion game for
which any sequence of improvement steps has exponential length (see [6] and [1]). In
the next section, however, we will see special congestion games where best responses
(as special cases of improvement steps) quickly converge to Nash equilibria.

3.3 Matroid congestion games

There is a special type of atomic congestion games related to matroid theory, defined
as follows:

Definition 3.9
An atomic congestion game is a matroid congestion game if for each player
i ∈ N the set of strategies Si forms the bases of a matroid (E, Ii), so Si = B
from Definition 2.3.

In this section, we refer to [1], where these games have originally been studied. An
important result given in this work is that the basis exchange property of matroids
allows to upper bound the length of a sequence of best responses polynomially in
the number of players and resources:

Theorem 3.10 (Theorem 2.5 in [1])
Let ΓACG be a matroid congestion game with n players and |E| = m resources.
Then players reach a Nash equilibrium after at most n2m2 best response improve-
ment steps.

Proof
We consider the potential function from equation 3.1 with regard to alternative cost
functions c̃e: Construct a list of all possible cost values for all ce and sort the list in
non-decreasing order. Specifically, the list contains all distinct values ce(i) for e ∈ E
and 1 ≤ i ≤ n, which are sorted non-decreasingly. Then c̃e(i) is defined to be the
index of ce(i) in that list. Now, c̃e(i) is higher when ce(i) appears later in the list.
Intuitively, c̃e(i) gives the “rank” of ce(i) relative to all possible costs.

Note that the list of cost values has length at most nm, the alternative cost
functions are positive-valued and the congestion on any edge can not exceed the
number of players. Using these observations, we can bound the potential function
with regard to the alternative costs for profiles s ∈ S1 × · · · × Sn:

0 ≤ Ψ̃(s) =
∑
e∈E

ne(s)∑
i=1

c̃e(i) ≤
∑
e∈E

ne(s)∑
i=1

nm ≤ n2m2.

To complete the proof, it remains to show that each best response improvement
step decreases Ψ̃ by at least 1. To that end, fix a profile s = (s1, . . . , sn) that is
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not a Nash equilibrium, let s′i ∈ Si be a best response to s for player i and write
s′ = (s1, . . . , s

′
i, . . . , sn). Then for all e ∈ si \ s′i and e′ ∈ s′i \ si it holds that

ce′(ne′(s
′)) ≤ ce(ne(s))

since otherwise, by Lemma 2.5, player i could choose another strategy s′i\{e′}∪{e} ∈
Si with lower costs and s′i would not be a best response. Additionally, for at least one
pair (e, e′), the inequality must be strict, because the best response strictly decreases
the total costs for player i.

Thus, we have that the best response decreases costs ce. The alternative cost
functions c̃e are only the “ranks” of the original cost functions and therefore decrease
as well. To conclude, the best response must decrease the potential Ψ̃. But since the
potential is bounded from below by 0 and from above by n2m2, this means that any
sequence of best responses has length at most n2m2. �

Example 3.11 (Minimum spanning tree congestion game)
Recall Example 2.8. There, we saw that the set of all spanning trees in a connected,
undirected graph forms the bases of a matroid over the edge set of that graph.

We can imagine the following atomic congestion game: n players each choose a
spanning tree in the graph and want to minimize their total cost, which is the sum of
costs per edges in their chosen tree. The edge costs are functions of the congestion
on the respective edge. So after all players have chosen their spanning tree, it might
be beneficial for some players to switch to another tree. Now Theorem 3.10 tells us
that the number of such best responses can be bounded polynomially in the number of
players and edges in the graph.

3.4 Nonatomic congestion games

Often, we are not interested in the conduct of a single actor in a system but rather
in the behavior of large groups of actors. As such, we can analyze player populations
instead of individual players.

Consider, for example, a network congestion game where the network corresponds
to a road map of a large city and there are hundreds of thousands of drivers, some
of whom have the same origins and goals. Now, instead of analyzing best response
dynamics between hundreds of thousands of players, we can think of all drivers with
the same start and end points as belonging to the same population. The strategies
available to a population are paths from their origins to their destinations. The
exact number of drivers in a population may not matter, but the relation between
population sizes does. We can analyze these scenarios as nonatomic congestion games.
These games are described e.g. in [18] and [10], which we refer to.

Definition 3.12
A nonatomic congestion game is a tuple ΓNCG = (N,E, (Si)i∈N , (ce)e∈E, (di)i∈N)
where N is now a finite set of populations. Players in the same population i ∈ N
share the same set of strategies Si ⊆ 2E, di ≥ 0 can be interpreted as the demand
or size of population i and we require for the strategy distribution xi = (xis)s∈Si of
population i that

∑
s∈Si x

i
s = di, meaning that players in a population may choose

different strategies, but exactly the total demand is allocated among the chosen
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strategies. We require the cost functions ce : R+ → R+ for resources e ∈ E to be
continuous and non-decreasing.

Let x = (xi)i∈N be the strategy distributions of all populations. The congestion
on a resource e ∈ E is the sum of the demands that all populations allocate to
that resource, so

ne(x) =
∑
i∈N

∑
s∈Si : e∈s

xis.

Similar to atomic congestion games, the cost of using resource e under dis-
tributions x is ce(ne(x)) and the total payoff of playing a strategy s ∈ 2E is
−
∑

e∈s ce(ne(x)). Therefore, populations want to allocate their demand so that
the strategies they use cause as little cost as possible.

The notion of matroid congestion games from Definition 3.9 carries over to the
nonatomic case: the game has matroid structure if each strategy set is the set of
bases of some matroid.

As populations are continuums [0, di], every player in a nonatomic congestion game
is infinitesimally small. Thus, we cannot directly apply the terms from Definition 3.4
to analyze equilibrium situations for these games. Instead, we define another type of
equilibrium:

Definition 3.13 (Wardrop equilibrium)
A strategy distribution x = (xi)i∈N of the populations in a nonatomic congestion
game is called a Wardrop equilibrium if for all populations i ∈ N all strategies
s ∈ Si that are actually in use by that population (meaning xis > 0) have minimum
cost, therefore ∑

e∈s

ce(ne(x)) ≤
∑
e∈s′

ce(ne(x))

for all s′ ∈ Si.

These types of equilibria were first introduced for road planning tasks (akin to
the example given at the beginning of this section, see also [19]). Their connection
to game theory was established later, for example in [5]. There, it is shown that
a traffic network in Wardrop equilibrium corresponds to a strategic game in Nash
equilibrium where players are pairs of origin and destination nodes in the network
and their strategies are a continuum of possible demand allocations between these
nodes.

Another analogy between Wardrop and Nash equilibria is given e.g. in [19]. There,
Nash equilibria are defined for nonatomic congestion games as follows: the game is in
equilibrium if no (possibly infinitesimally small) amount of players (demand) can be
reallocated to another strategy without increasing their cost. It can be shown that
such Nash equilibria are equivalent to Wardrop equilibria for games with continuos,
non-negative and non-decreasing cost functions (as in Definition 3.12).

For atomic congestion games, we presented an efficient method to compute a
Nash equilibrium. We have not yet discussed how a Wardrop equilibrium may be
computed. It turns out that this is possible by solving an optimization problem:
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Theorem 3.14 (Beckmann potential)
For a strategy distribution x of the populations in a nonatomic congestion game
we define the Beckmann potential

Φ(x) =
∑
e∈E

∫ ne(x)

0

ce(t)dt. (3.2)

Then x is a Wardrop equilibrium if and only if it minimizes Φ(x).

For the proof, we refer to [2]. Intuitively, the Beckmann potential function is a
continuos analogue of the Rosenthal potential (equation 3.1). If a population shifts
some amount of their demand to a strategy with lower costs, then the potential
decreases. Once this is no longer possible, the strategy distribution is, by definition,
a Wardrop equilibrium.

The Beckmann potential is a sum of terms which are integrals over non-decreasing
functions ce and thus convex. Therefore, finding a Wardrop equilibrium reduces to
minimizing a convex separable function. For nonatomic matroid congestion games,
it is shown in [10] that the set of all strategy distributions x can be represented as a
polymatroid base polytope. Therefore, the decomposition algorithm from [11] (see
section 2.5) can be used to minimize the Beckmann potential and find a Wardrop
equilibrium in a nonatomic matroid congestion game.

To see this, we will present the argument from [10]. Assume we have a nonatomic
matroid congestion game, so the strategy set Si of population i is exactly the bases
Bi of a matroid (E, Ii) with rank function pi. A strategy distribution xi induces
a congestion vector yi = (yi1, . . . , y

i
m) ∈ RE

+ with entries yie =
∑

s∈Si : e∈s x
i
s for all

resources e ∈ E (meaning, the congestion on resource e created by population i).
The set of all possible congestion vectors created by population i is a polymatroid
base polytope

Pi = {yi ∈ RE
+ | yi(X) ≤ di · pi(X) ∀X ⊆ E, yi(E) = di · pi(E)}.

The inequalities are obtained, because the congestion on a subset of resources X ⊆ E
can be at most the total demand of population i multiplied by the maximal number
of resources that the total demand can be imposed on (which is pi(X), the maximum
size of an independent subset of X). The polytope Pi is indeed a polymatroid base
polytope, because pi is a matroid rank function and therefore also a polymatroid
rank function. Scaling it with di preserves this property.

Now, the set P of all possible congestion vectors after all populations have
allocated their demand consists of the sums of individual elements of all Pi, therefore

P = {p1 + . . .+ pn | p1 ∈ P1, . . . , pn ∈ Pn} .

The set P is also known as the Minkowski sum of all Pi, see for instance [22]. It is
shown there that P can be written as

P =

{
y ∈ RE

+

∣∣∣∣∣ y(X) ≤
∑
i∈N

di · pi(X) ∀X ⊆ E, y(E) =
∑
i∈N

di · pi(E)

}
.

Since summing up polymatroid rank functions preserves submodularity, we get that
P is a polymatroid base polytope as well.
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Altogether, a Wardrop equilibrium may be computed as an optimal solution to

min
y∈P

(∑
e∈E

∫ ye

0

ce(t)dt

)
, (3.3)

which is a convex separable minimization problem over a polymatroid base polytope
that can be solved using the decomposition algorithm from section 2.5.

3.5 Sensitivity analysis: Matroid congestion

games and Braess paradox

In this section, we will see a first application of sensitivity analysis. This is the
study of how the optimal solution of an optimization problem changes when some
parameters of the problem are adjusted. In other words, we assume that we have
obtained an optimal solution for some optimization problem and want to see if we
can change the solution slightly to accommodate different parameters.

For nonatomic matroid congestion games, we will see that decreasing game
parameters (demands of the populations and cost functions of resources) results in a
decrease of costs in a Wardrop equilibrium. This can be used to prove that a certain
anomaly does not occur in matroid congestion games. The results in this section are
from [10].

The anomaly is called “Braess paradox”: For some congestion games, reducing
demands or resource costs can negatively affect the cost experienced by some or all
players in an equilibrium. We will illustrate both cases with examples.

Example 3.15 (Braess paradox: cost reductions)
This is a canonical example found e.g. in [18], [19] and [10]. Observe the network

given in Figure 3.2a. We interpret it as a nonatomic network congestion game with a
single population 1 ∈ N with demand d1 = 1 whose set of strategies are the two paths
from s to t. The cost of each edge is given as a function of the edge’s congestion
x. The game is in a Wardrop equilibrium when one half of the population chooses
the upper path through the network and the other half chooses the lower path. In
that case, the cost of each strategy is 1

2
+ 1 = 3

2
and since there are no others, all

strategies in use by the population have minimum cost (cf. the definition of Wardrop
equilibria 3.13).
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Figure 3.2: Braess paradox for cost reductions. The network in 3.2b
features a low cost edge not present in 3.2a, but the cost on its equilibrium
path is higher.

Now consider the network in Figure 3.2b. It is obtained from the network in
Figure 3.2a by adding another edge with cost 0 (equivalently, we could say that
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the edge is already included in Figure 3.2a and its cost was reduced from ∞ to 0).
Intuitively, adding this edge should improve or at least not negatively affect network
performance. However, the new Wardrop equilibrium routes all demand through the
path s→ a→ b→ t, resulting in a total cost of 1 + 1 = 2 on that path. In this case,
either of the other two paths also impose a cost of 2, so this is indeed a Wardrop
equilibrium.

Thus, adding a new edge with low costs or reducing the cost of an existing edge
in a network congestion game may increase the total cost for some players.

Example 3.16 (Braess paradox: demand reductions)
The previous example can be adapted to demonstrate that reducing the demand of
some population in a nonatomic congestion game can increase the total cost for some
players. Observe the network given in Figure 3.3. This time, the cost of the edge
from a to b is given by the function

f(x) = max{x− 1, 0}.

There are two populations {1, 2} ∈ N with demands d1 = 1, d2 = 2. Population 1
may use either of the three paths from s to t. Population 2 only uses the path from
a to b. In this scenario, the game is in a Wardrop equilibrium when one half of
population 1 chooses the upper path through the network and the other half chooses
the lower path. Population 2 imposes all of its demand on the edge from a to b, on
the only path it has available. Then, as in the previous example, the cost of each
strategy used by population 1 is 1

2
+ 1 = 3

2
.
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b
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x

1

f(x)

1

x

Figure 3.3: Braess paradox for demand reductions. Reducing the
demand on the edge from a to b can negatively affect the total costs in an
equilibrium.

Now assume the demand of population 2 is reduced to d̄2 = d2−2 = 0. Afterwards,
the network available to population 1 is equivalent to the one in Figure 3.2b. Thus,
the cost of the strategy s → a → b → t used by population 1 in the new Wardrop
equilibrium is 2. Altogether, reducing the demand of population 2 has increased costs
for players in population 1.

The authors in [10] differentiate between two kinds of the paradox: the strong
Braess paradox occurs when a cost or demand reduction increases the cost of strategies
that are actually used in a Wardrop equilibrium. For the weak Braess paradox, it
suffices when there is some resource with increased cost, but the congestion on that
resource may be 0. Note that in examples 3.15 and 3.16 both the weak and the
strong paradox occur. Definition 3.17 states them formally.

We begin by observing that whenever a population i has strategies s, s′ ∈ Si
available so that s ⊆ s′, then i will never be worse of by choosing s over s′ since cost
functions are non-negative. Therefore, from here on we assume that the strategy sets
Si of all populations i form a clutter, i.e, none of their strategies are contained in
another.
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Definition 3.17 (Braess paradox, Definition 2.6 in [10])
A family of strategy sets (Si)i∈N admits Braess paradox if there is a nonatomic
congestion game ΓNCG = (N,E, (Si)i∈N , (ce)e∈E, (di)i∈N) with these strategies
and another instance obtained from ΓNCG by reducing costs and/or demands,
Γ̄NCG = (N,E, (Si)i∈N , (c̄e)e∈E, (d̄i)i∈N), with

c̄e(t) ≤ ce(t) ∀t ≥ 0 and

d̄i ≤ di ∀i ∈ N

so that for Wardrop equilibria x of ΓNCG and x̄ of Γ̄NCG it holds:

Weak Braess paradox: ∃e ∈ E : ce(ne(x)) < c̄e(ne(x̄))

Strong Braess paradox: ∃i ∈ N, s, s̄ ∈ Si : xis > 0, x̄is̄ > 0 and∑
e∈s

ce(ne(x)) <
∑
e∈s̄

c̄e(ne(x̄))

Here, we will focus on the following result from [10]: if for all populations, the
strategies Si are the bases of matroids, then the weak Braess paradox cannot occur.
This implies that the strong Braess paradox does not occur either, since the costs of
strategies cannot rise when the costs of all resources do not increase.

To show this, two lemmata are needed. The first implies that minimal solutions
of the Beckmann potential over a polymatroid decrease in all components under cost
reductions. The second lemma states the same under demand reductions. From the
previous section, we know that feasible strategy distributions of nonatomic matroid
congestion games induce congestion vectors that form a polymatroid. Furthermore,
minimum solutions of the Beckmann potential are Wardrop equilibria. Therefore,
the lemmata imply that cost and demand reductions do not increase the cost for
resources in Wardrop equilibria of these games. In other words: strategy sets that
are bases of matroids are immune to the weak and strong Braess paradox.

Lemma 3.18 (Lemma 3.2 in [10])
Let x, x̄ ∈ RE

+ be two optimal solutions of equation 3.3, where the corresponding
problem instances are obtained from nonatomic congestion games ΓNCG and Γ̄NCG

that differ only in their cost functions such that c̄e(t) ≤ ce(t) for all t ≥ 0. Then it
holds that

c̄e(x̄e) ≤ ce(xe)

for all e ∈ E.

Proof
The key idea of this proof is to use Lemma 2.14 on a component of the minimal
solution that is assumed, by contradiction, to have increased after the cost reduction.

Formally, assume ce(xe) < c̄e(x̄e) for some e ∈ E. Then x̄e > xe, because ce is
monotone. Since x, x̄ are elements of the same base polytope, using the lemma gives
a component f ∈ E with x̄f < xf so that (e, f) is an exchangeable pair for x and
(f, e) is an exchangeable pair for x̄.

Now consider the optimality conditions of minimizing a convex separable function
(such as the Beckmann potential) over a polymatroid from Lemma 2.16. The
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derivatives of the terms in the Beckmann potential are exactly the cost functions.
Therefore, we obtain for the two exchangeable pairs that cf(xf) ≤ ce(xe) and
c̄e(x̄e) ≤ c̄f (x̄f ). This is sufficient to obtain the contradiction

cf (xf ) ≤ ce(xe) < c̄e(x̄e) ≤ c̄f (x̄f ) ≤ cf (xf ),

where the last inequality follows from our assumptions that cost functions are
monotone and were only decreased. �

Lemma 3.19 (Lemma 3.3 in [10])
Let x, x̄ ∈ RE

+ be two optimal solutions of equation 3.3, where the corresponding
problem instances are obtained from nonatomic congestion games ΓNCG and Γ̄NCG

that differ only in the demand of one player such that d̄j < dj for a j ∈ N . Then it
holds that

c̄e(x̄e) ≤ ce(xe)

for all e ∈ E.

Proof (Sketch)
As with the previous lemma, the proof proceeds by contradiction. Here, however,
the two minimal solutions are not elements of the same base polytope, so Lemma
2.14 is not directly applicable: if x is an element of a base polytope P as constructed
in section 3.4, then x̄ is an element of a similar polytope P̄ , where the summand Pj
of the Minkowski sum is changed to

P̄j =
{
yj ∈ RE

+

∣∣ yj(X) ≤ d̄j · pj(X) ∀X ⊆ E, yj(E) = d̄j · pj(E)
}
,

implying that P̄j =
{
d̄j
dj
yj
∣∣∣ yj ∈ Pj} =

d̄j
dj
Pj . The other summands in the Minkowski

sum remain unchanged.
The key idea to circumvent this issue is to construct an element x′ ∈ P̄ so that,

assuming ce(xe) < c̄e(x̄e) for some e ∈ E, one gets x̄e > x′e. Note that x′j =
d̄j
dj
xj ∈ P̄j

and therefore x′ = x′j +
∑

i∈N\{j} xi ∈ P̄ . Then x̄e > xe ≥ x′e. Thus, Lemma 2.14

can be applied for x′, x̄ ∈ P̄ . The authors then obtain a contradiction similarly to
the proof of the previous lemma. �

Lemma 3.19 refers to only one change in demand. If several populations reduce
their demand, this can be interpreted as consecutive individual changes.

There are several more results in [10]. Importantly, it is shown that if (Si)i∈N are
immune to the weak Braess paradox, then all Si must be bases of matroids. In the
proof, a polytope per population i is constructed, containing all characteristic vectors
of strategies in Si. Then it is shown that the Minkowski sum of these polytopes must
be a polymatroid base polytope arising from matroid bases. This is the converse
direction of what was shown previously, thus yielding the characterization:

Theorem 3.20 (Theorem 3.1 in [10])
A family of strategy sets (Si)i∈N is immune to the weak Braess paradox if and
only if (Si)i∈N are bases of matroids.
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Finally, the authors show that when there are at least two populations, any
(Si)i∈N that are “universally immune” to the strong Braess paradox must consist
of bases of matroids. Universally immune means the following: note that if the
strategies are bases of matroids per population, this does not imply any information
on how the strategy distribution of one population affects the resources used by
other populations. For example, the Si might be bases of matroids over disjunct
ground sets, so that the populations are essentially independent from each other in
their choices of resources. If (Si)i∈N are universally immune to the strong Braess
paradox, then the paradox cannot occur regardless of how the resources used by the
populations correspond to each other.

To prove universal immunity, it is assumed that one population strategy set Sj
does not contain the bases of a matroid. Then, the authors construct a game that
invokes the strong Braess paradox: two populations (including j) are separated from
the rest (meaning they operate on separate resource sets). Then certain properties of
the non-matroid set system Sj are exploited which guarantee that the strong Braess
paradox involving cost reductions can occur between these two populations.

These latter results do not involve sensitivity analysis, which is why we refer to
[10] for the details.

3.6 Sensitivity analysis: Polymatroid games

have pure Nash equilibria

In this section, we will see another application of sensitivity analysis. We will discuss
the results from [12], where the following optimization problem is considered: a
separable convex function that may depend on parameters and is subject to some
regularity constraints regarding these parameters shall be minimized over an integral
polymatroid (cf. definitions 2.11 and 2.12). We will see the regularity assumptions
shortly. The authors in [12] show that minor changes to the parameters of the
objective function or the polymatroid result in minor changes to the optimal solution.
These results are used to prove that a particular class of non-cooperative games,
called “polymatroid games”, has pure Nash equilibria. Polymatroid games are quite
similar to congestion games and it can be shown that atomic matroid congestion
games are one of their special cases. Thus, the existence of pure Nash equilibria for
polymatroid games generalizes Theorem 3.10.

Formally, the following optimization problem is analyzed:

Problem 3.21
Let p : 2E → N be an integral polymatroid rank function and P (p) the polymatroid
polytope associated with p. For a d ∈ N with d ≤ p(E), the d-truncated integral
polymatroid base polytope is defined as

B(p, d) = {x ∈ P (p) | x(E) = d} .

Furthermore, let ce : N × N → R be cost functions for all e ∈ E that are
discrete convex in their first parameter and regular (will be explained later).
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These cost functions depend on parameters te ∈ N for all e ∈ E. We want to
find a solution to

min
x∈B(p,d)

∑
e∈E

ce(xe, te).

For fixed parameters te, this optimization problem bears resemblance to continuous
convex separable optimization problems over polymatroids that were discussed earlier.
It is, however, not immediately clear how convexity should be defined for functions
on an integer domain. Consider a function f : N→ R. It’s left and right derivatives
are defined as

f+(x) = f(x+ 1)− f(x) and f−(x) = f(x)− f(x− 1)

for all x ∈ N. Note that these are the difference quotients from continuous functions
without taking the limit. Intuitively, the right derivative corresponds to the slope of
a line drawn between the points (x, f(x)) and (x+ 1, f(x+ 1)) (similarly for the left
derivative).

f is defined to be discrete convex if its left derivative is not greater than the right
derivative, i.e.,

f−(x) ≤ f+(x)

for all x ∈ N. It can be shown (see [16]), that with this notion of discrete convexity,
certain desirable properties known from continuous convex functions hold as well. In
particular, any discrete convex function can be extended to a continuous convex func-
tion that coincides with it on the domain N. Additionally, recall that a differentiable
function is convex if its derivative is monotonically non-decreasing. For discrete
functions, this holds similarly since f+(x) = f−(x + 1) and so f−(x) ≤ f−(x + 1)
and f+(x) ≤ f+(x+ 1) for discrete convex functions. Thus, the notion of discrete
convexity also fulfills the intuitive idea: f grows quicker on larger values.

In fact, the optimality conditions for continuous convex separable optimization
over polymatroids from section 2.5 hold for Problem 3.21 as well if the parameters
are fixed. The left and right derivatives are with respect to the first parameter, since
that parameter is being optimized over. So

c+
e (xe, te) = ce(xe + 1, te)− ce(xe, te) and c−e (xe, te) = ce(xe, te)− ce(xe − 1, te).

The decomposition algorithm can be applied to piecewise linear extensions of the
ce to get an integral solution for Problem 3.21. See [9] or [11] for proofs of these
statements.

It remains to determine how the cost functions ce may depend on their parameters
te. If minimal changes to te can create arbitrary changes in ce, then any sensitivity
analysis will be fruitless. Therefore, the authors in [12] require the cost functions
to be regular , meaning they fulfill additional constraints on their second parameter.
Specifically, these constraints are

c−e (xe, te) ≤ c−e (xe, te + 1) and

c−e (xe, te + 1) ≤ c+
e (xe, te)

for all xe, te ∈ N. Intuitively, the second parameter of a regular cost function does
not impact the cost too drastically, since the increase it causes to the marginal
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contribution of the first parameter is bounded by the right derivative. A regular
function is also discrete convex in its first parameter, which can be seen by combining
the two inequalities.

Two sensitivity results are given in [10]. The first refers to changes to the
parameter te of cost functions ce. The second considers changes to the polymatroid’s
parameter d. They state that minimal changes (meaning ±1) to one parameter
result in elementary changes to optimal solutions of Problem 3.21 in at most two
components. The results in full are:

Theorem 3.22 (Theorem 3.2 in [12])
Let x be a minimal solution for Problem 3.21 given parameters (te)e∈E and d.
Consider a change in parameter t̄e = te + 1 for some e ∈ E.

Then either x is an optimal solution for the new parameters or there exists
an exchangeable pair (g, e) associated with x such that x+ χg − χe is optimal for
the new parameters.

Proof (Sketch)
Recall the optimality conditions from Lemma 2.16. If there is no exchangeable
pair for e associated with x, then x is necessarily optimal for the new parameters.
Otherwise, if for all exchangeable pairs (f, e) associated with x its holds that

c−e (xe, te + 1) ≤ c+
f (xf , tf ),

then intuitively, shifting some value from xe to another component of x will not
decrease costs under the t̄e. In this case, the authors use the regularity assumptions
to show that x is still optimal for the new parameters.

If the above inequality does not hold, one chooses the exchangeable pair (g, e)
associated with x where g has minimal marginal cost increase, so

c+
g (xg, tg) minimal among exchangeble pairs (g, e).

The authors proceed by showing that x+ χg − χe is optimal for the new parameters
by proving that the optimality conditions from Lemma 2.16 are fulfilled. �

Theorem 3.23 (Theorem 3.4 in [12])
Let x be a minimal solution for Problem 3.21 given parameters (te)e∈E and d.
Consider a change in parameter d̄ = d+ 1, provided d̄ ≤ p(E).

Then there exists a g ∈ E such that x+χg is optimal for the new parameters.

Proof (Sketch)
g is chosen such that

c+
g (xg, tg) minimal among

{
g ∈ E

∣∣ x+ χg ∈ B(p, d̄)
}
.

Note that such a g must always exist. Otherwise, we would have sat(x) = E and
thus x(E) = x(sat(x)) = p(sat(x)) = p(E) by the definition of saturated components.
But since x ∈ B(p, d), we have that x(E) = d < d̄ ≤ p(E). See also [9].

Again, the authors in [12] show that x + χg is optimal using the optimality
conditions from Lemma 2.16. �
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Both theorems also hold for the symmetric case that a parameter is decreased
instead of increased. Combining them gives the following: when some parameters
in Problem 3.21 change, an optimal solution x can be recomputed through at most
two unit changes to x per unit change in the parameters. The authors in [12] use
this idea to construct an algorithm that calculates pure Nash equilibria for a class of
non-cooperative games related to polymatroid theory. We begin by introducing this
class of games:

Definition 3.24 (Polymatroid games)
A polymatroid game is a tuple ΓPG = (N,E, (pi)i∈N , (di)i∈N , (ci,e)i∈N,e∈E) where
N is a finite set of players, E a finite set of resources, di ∈ N are integral demands
and pi : 2E → N integral polymatroid rank functions per player. The strategy
set of player i is B(pi, di), the di-truncated integral base polytope associated with
pi. Cost functions ci,e : N×N→ R are specific to resources e ∈ E and players
i ∈ N . The first parameter shall contain the congestion that player i creates on
resource e and the second parameter the congestion of all other players on e. The
functions are required to be regular.

A profile contains vectors of all the players’ polytopes, so x = (x1, . . . , xn) ∈
B(p1, d1)× · · · ×B(pn, dn). Note that, since xi(E) = di, all of player i’s demand
gets allocated among resources in E. We can consider xie to be the congestion
that player i creates on resource e and

∑
i∈N x

i
e the total congestion created on

e by all players. Therefore, the cost that resource e imposes on player i under
profiles x is exactly

ci,e

xie, ∑
j∈N\{i}

xje


and the payoff for player i under profile x is −

∑
e∈E ci,e

(
xie,
∑

j∈N\{i} x
j
e

)
.

Theorem 3.25
Polymatroid games have pure Nash equilibria that can be computed in time
polynomial in the number of players, resources and the maximum di.

Theorem 3.25 follows from the correctness and runtime analysis of an algorithm
proposed in [12] that constructs a pure Nash equilibrium. The algorithm initializes
all players’ demands to zero. Then all players’ polytopes contain only the zero vector
and a profile of zero vectors constitutes a pure Nash equilibrium for these demands.
Afterwards, the demand of some player is increased by one and a Nash equilibrium
for the new scenario is obtained through repeated best responses of all players. This
is iterated until the original demands of all players are met.

In each iteration, players apply best responses until no player can improve anymore.
Thus, once the original demands of the players have been reached, a Nash equilibrium
of the polymatroid game is computed. Therefore, the algorithm is correct, provided
that the sequence of best responses terminates. To show this, the two sensitivity
results are essential: When the player whose demand is increased chooses a best
response, they can do so by adding one unit to a component of their strategy. This
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follows from Theorem 3.23, since their strategy is a vector in a truncated polymatroid
base polytope and they wish to minimize a sum of regular cost functions over that
polytope.

Additionally, when the other players apply best responses after the initial increase
of demand, they can do so by shifting a unit in their strategy vector from one
component to another. This follows from Theorem 3.22, since the initial player’s best
response results in an increase of the congestion on some resource. Therefore, after
each best response, there is exactly one resource with increased congestion compared
to before the initial increase of demand. The key difficulty in proving the correctness
of the algorithm is to show that this “shifting of units” does not loop endlessly. To
that end, the authors show that a certain vector of marginal costs decreases after
each best response (for a suitably defined order). As an analogy, this vector can be
thought of as a potential associated with each profile of strategies.

In total, the algorithm iterates over every unit of demand of all players, the
number of which can be bounded in the number of players and the maximum di over
all i ∈ N . Likewise, the number of best responses in each iteration can be bounded
polynomially in the number of resources, players, and player demands. Altogether,
Theorem 3.25 follows. We refer to [12] for the rigorous proof.

As mentioned before, Theorem 3.25 generalizes Theorem 3.10. To see this, we
need to prove that atomic matroid congestion games are polymatroid games. This is
stated in Lemma 3.26.

Lemma 3.26 (Proposition 4.2 in [12])
Under the additional assumption that cost functions be non-decreasing, atomic matroid
congestion games are polymatroid games.

Proof
The authors in [12] show this for atomic matroid congestion games where cost
functions are both player and resource specific and the players’ matroids can have
different ground sets. Our definitions 3.6 and 3.9, in which cost functions are solely
resource specific and all players’ matroids share a ground set, are a special case.

Let ΓACG = (N,E, (Si)i∈N , (ce)e∈E) be an atomic matroid congestion game, where
Si is the bases of a matroid (E, Ii) for each player i ∈ N . We construct from this a
polymatroid game ΓPG = (N,E, (pi)i∈N , (di)i∈N , (ci,e)i∈N,e∈E), where pi is simply the
rank function of player i’s matroid and the demand of each player is set to the rank
of their matroid, so di = pi(E).

The cost function ci,e of player i ∈ N and resource e ∈ E in ΓPG is obtained from
the cost function ce of resource e in ΓACG by

ci,e(x
i
e, te) =

{
ce(x

i
e + te) if xie = 1

0 if xie = 0

for xi ∈ B(pi, di) and all te ∈ N. Intuitively, player i only experiences cost for
resources they actually use and that cost is given by the original cost functions of
the resources in the congestion game. Note that either xie = 1 or xie = 0, since xi is a
vector in the integral base polytope of player i, so xi ≥ 0, and for the matroid rank
function pi defining the polytope it holds: pi({e}) ≤ |{e}| = 1 by (Subcardinality).

To finish the proof, it is sufficient to verify that all ci,e fulfill the regularity
constraints. To that end, fix i ∈ N, e ∈ E and a te ∈ N. For xie = 0, we do not need
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to check the constraints, as the left derivatives c−i,e(0, te), c
−
i,e(0, te + 1) are not defined.

For xie = 1, the right derivative c+
i,e(1, te) is not defined, but we can check

c−i,e(x
i
e, te) = c−i,e(1, te) = ci,e(1, te)− ci,e(0, te) = ce(1 + te) ≤

ce(1 + te + 1) = ci,e(1, te + 1)− ci,e(0, te + 1) = c−i,e(1, te + 1) = c−i,e(x
i
e, te + 1),

where the inequality holds because ce is non-decreasing. �

Note the different approaches in showing the existence of pure Nash equilibria.
In the proof of Theorem 3.10, this is done via a potential function. For polymatroid
games, the key ideas were the sensitivity results from theorems 3.22 and 3.23.

The remaining results in [12] show that submodularity of the function defining
the feasible region is necessary for the sensitivity results regarding Problem 3.21
to hold. Likewise, there is a game with regular convex cost functions and where
the players’ strategies do not form a polymatroid that does not have a pure Nash
equilibrium. Importantly, these statements are only shown for the case of regular
cost functions. For their proofs, we refer to [12].



Chapter 4

Cooperative Games

In chapter 3 we looked at games with selfish players who wish to maximize their
payoff. In contrast, players in cooperative games may work together to improve their
benefits or reduce their losses.

As in the previous chapter, we indicate the sources for all definitions and results
at the beginning of each section. Section 4.4 consists of original work.

4.1 Core allocations

We now introduce some basic concepts from cooperative game theory that are found
in standard textbooks. In particular, we will consider the problem of finding core
allocations for cooperative games. The material in this section and the next can be
found e.g. in [18] and [20].

Definition 4.1
A cooperative game consists of a tuple Γcoop = (N, c) where N is a finite set of
players participating in the game. We call subsets of players C ⊆ N coalitions.
c : 2N → R+ defines a cost for each coalition and we require c to satisfy

(Normalization) c(∅) = 0

(Monotony) c(A) ≤ c(B) for A ⊆ B ⊆ N

(Subadditivity) c(A) + c(B) ≥ c(A ∪B) for A,B ⊆ N with A ∩B = ∅

Equivalently, cooperative games may be tuples (N, v) where v : 2N → R+ is a
benefit function satisfying normalization, monotony and

(Superadditivity) v(A) + v(B) ≤ v(A ∪B) for A,B ⊆ N with A ∩B = ∅

We will mostly focus on games defined using cost functions. Due to the subad-
ditivity of c, players in a cooperative game are encouraged to work together (i.e.,
form coalitions) to minimize the cost they experience. Forming coalitions, however,
opens up the question of how the cost c(C) experienced by a coalition should be
distributed to its members. Under an unfair distribution of costs, some players might
prefer to defect from their coalition and form their own group to obtain lower costs.

33
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A large part of cooperative game theory deals with the question of how the grand
coalition N can distribute the cost c(N) fairly among its members. Several solutions
for this have been proposed, see for example [18]. We will deal with a particular
solution concept called the core. It is motivated by the idea that no coalition wants
to incur more cost than it contributes to the grand coalition.

Definition 4.2
The set of cost distributions x ∈ RN with

(Budget balance)
∑

i∈N xi = c(N)

(Core property)
∑

i∈C xi ≤ c(C) ∀C ⊆ N

is called the core of the cooperative cost game (N, c). For benefit games (N, v),
the core property becomes

∑
i∈C xi ≥ v(C) ∀C ⊆ N .

Under a cost (benefit) distribution x ∈ RN , player i pays cost (gets benefit) xi.
The budget balance condition means all the cost gets distributed. The core property
implies that no coalition pays higher cost (or gets less benefit) than it would pay (or
get) if it defected from the grand coalition.

The core of a cooperative game may be empty, so competitive behavior may
sometimes be preferable to cooperative options. This provides a motivation for other
cost distribution concepts. In the next section, however, we will see a type of game
where the core is guaranteed to be non-empty.

4.2 Convex cooperative games

It turns out that convex cooperative games have core elements that can be found
efficiently.

Definition 4.3
A cooperative game is convex if its cost function is submodular or if its benefit
function is supermodular.

Note that a submodular function is also subadditive and a supermodular function
is also superadditive. To see that a core element for convex cost games can be
found efficiently, observe: a submodular cost function is indeed the rank function
of a polymatroid (cf. definitions 4.1 and 2.11). Therefore, the core is exactly the
polymatroid base polytope (cf. definitions 4.2 and 2.12) and an element of that
polytope can be found quickly, as described in Theorem 2.15.

For a convex benefit game (N, v), we can construct from the benefit function v
a polymatroid rank function v′ : 2N → R+ so that the associated polymatroid base
polytope coincides with the core of the benefit game (see [9], Lemma 2.4). For all
C ⊆ N define

v′(N \ C) = v(N)− v(C), or equivalently: v′(C) = v(N)− v(N \ C).
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v′ is clearly normalized and monotone and its submodularity results from the super-
modularity of v, since for all A,B ⊆ N ,

v′(A) + v′(B) ≥ v′(A ∪B) + v′(A ∩B)

⇔ 2v(N)− v(N \ A)− v(N \B) ≥ 2v(N)− v(N \ (A ∪B))− v(N \ (A ∩B))

⇔ v(N \ A) + v(N \B) ≤ v(N \ (A ∪B)) + v(N \ (A ∩B))

= v((N \ A) ∩ (N \B)) + v((N \ A) ∪ (N \B)).

We can now see that the core of the benefit game and the base polytope for v′ are
equal since for a vector x ∈ RN

+ with x(N) = v(N) = v′(N) we have

x(C) ≤ v′(C) ∀C ⊆ N

⇔ x(N \ C) ≤ v′(N \ C) = v(N)− v(C) ∀C ⊆ N

⇔ x(C) = x(N)− x(N \ C) ≥ v(C) ∀C ⊆ N.

We will illustrate the concepts discussed so far with a cooperative game that has
a supermodular benefit function and a real-world analogue. In this game, the players
in N are creditors of a firm that has failed. Let di be the money in e owed by the
bankrupt firm to creditor i ∈ N . Furthermore, let E be the firm’s remaining estate,
i.e., the monetary equivalent in e of all assets of the firm that are to be divided
among its creditors. We assume that the combined claims of all creditors exceed the
estate. We wish to find a fair allocation of E among the players, in other words, we
want to find a core allocation for the following cooperative game:

Definition 4.4 (Bankruptcy game, see [4])
Let N = {1, . . . , n}, E ∈ N+ and d = (d1, . . . , dn) with di ∈ N+ so that∑

i∈N di > E. Furthermore, define a function v : 2N → R+ by

v(C) = max


E − ∑

i∈N\C

di

 , 0


for all C ⊆ N . Then the cooperative benefit game Γbk = (N, v) is called a
bankruptcy game.

v(C) is exactly the amount of money that a coalition C ⊆ N of creditors gets
without going to court since it is the amount left after all other creditors N \ C
have had their claim fulfilled. Importantly, v is supermodular (see Lemma 4.6). We
illustrate bankruptcy games and the computation of a core vector using Theorem
2.15 in the following example:

Example 4.5
A firm has gone bankrupt and leaves an estate of E = 1 000 000e. There are four
creditors N = {1, 2, 3, 4} with claims d1 = 300 000e, d2 = 200 000e, d3 = 700 000e
and d4 = 200 000e. For the benefit function we get e.g. v({2, 3}) = 500 000e.

To compute a core allocation, we fix the permutation π = (1, 2, 3, 4) of N and get

x1 = v({1})− v(∅) = 0e,

x2 = v({1, 2})− v({1}) = 100 000e,

x3 = v({1, 2, 3})− v({1, 2}) = 700 000e,

x4 = v({1, 2, 3, 4})− v({1, 2, 3}) = 200 000e.
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The allocation (x1, x2, x3, x4) of E among the creditors thus obtained is in the core
of the cooperative game. Therefore, no sub-coalition of creditors would be able to get
a better allocation for themselves if they chose to defect from the grand coalition.

Lemma 4.6
The bankruptcy game is convex, i.e., its benefit function is supermodular.

Proof
Let S ⊆ L ⊆ N and n ∈ N \ L. For the valuation function of the bankruptcy game
we need to show

v(S ∪ {n})− v(S) ≤ v(L ∪ {n})− v(L).

Firstly, observe that v(X) ≥ 0 for all X ⊆ N and that v(A) ≤ v(B) for all
A ⊆ B ⊆ N , because

∑
i∈N\A di ≥

∑
i∈N\B di. Now, if v(L) = 0 then also v(S) = 0,

because of these observations. But then also v(S∪{n})−v(S) ≤ v(L∪{n})−v(L)⇔
v(S ∪ {n}) ≤ v(L ∪ {n}) holds.

Thus, assume v(L) 6= 0, therefore v(L) = E −
∑

i∈N\L di and

v(L ∪ {n})− v(L) = E −
∑

i∈N\(L∪{n})

di − E +
∑
i∈N\L

di = dn.

If both v(L) 6= 0 and v(S) 6= 0, we get v(S ∪ {n})− v(S) = dn = v(L ∪ {n})− v(L).
It remains the case v(L) 6= 0 and v(S) = 0. But then

∑
i∈N\S di ≥ E and

therefore v(S ∪ {n}) ≤ dn = v(L ∪ {n})− v(L) so we obtain the claim. �

4.3 The joint replenishment game

We now introduce another, more complex cooperative game that is also convex. This
section is based on [13], [23] and [7].

Consider the following scenario: a group of retailers N = {1, . . . , n} sell the same
product, which they obtain from the same supplier. They are interested in ordering
their units (instances of the product) together, so as to benefit from volume discount
offered by the supplier. However, they have different levels of demand for the product
at their stores and also varying costs associated with holding the units before they are
sold. Therefore, they need to solve two problems in order to cooperate: firstly, they
will want to know at which intervals each retailer requests their units (to maximize
joint orders) and secondly, how to fairly distribute costs, preventing retailers from
forming competing coalitions.

This scenario, and variations, has been extensively studied as the “joint replen-
ishment problem” (a comprehensive survey is given in [14]). Here, we make some
additional assumptions (in accordance with [13] and [23]): We assume that time
progresses infinitely in steps t ∈ N+ and that each retailer i ∈ N faces a constant
demand di ∈ R>0 for the product at these time steps. Furthermore, we assume that
when an order is placed to the supplier, it instantaneously arrives at the retailers.
Finally, we restrict the retailers to fixed-interval reorders, meaning: each retailer i has
an associated replenishment interval Ti, so that they order at times 0, Ti, 2Ti, 3Ti, 4Ti
etc.

Now, denote by hi ∈ R>0 the holding cost for a unit at retailer i and fix a function
p : 2N → R+ that gives for each group of retailers C ⊆ N a cost p(C) they incur
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when ordering together (irrespective of the amount of units being ordered). We will
call this the setup cost. The function p shall satisfy the properties in Definition 2.11,
so p is a polymatroid rank function. Due to submodularity, this means that retailers
have an incentive to order together.

Now we turn towards answering the first question: at which intervals should
retailers place their orders? It can be shown (see [7]), that among fixed-interval
reorder strategies the “power-of-two policies” are never bad: The cost of choosing
a power-of-two policy is at most 6 % higher than choosing the optimal among all
fixed-interval strategies. By choosing the optimal power-of-two policy, this decreases
to 2 %. Formally, a power-of-two policy is defined by a retailer independent base
planning period L ∈ R>0 and retailer specific parameters mi ∈ Z, so that the
replenishment intervals per i ∈ N become

Ti = 2miL .

For the remainder, we fix an L . We still need to find appropriate mi. Furthermore,
we need to answer question two: how should the cost be allocated among players?
For this, we construct a cooperative game. Its characteristic function c(C) will
describe the long-run average cost of retailers C ⊆ N ordering together using an
optimal power-of-two policy. Define

T L = {2mL | m ∈ Z } ,

the set of all power-of-two replenishment intervals and

T L
C =

{
(Ti)i∈C

∣∣ Ti ∈ T L ∀i ∈ C
}

as a shortcut for the set containing all combinations of power-of-two replenishment
intervals for retailers in C. Then the average cost in the long run is

c(C) = min
TC∈TL

C

gC(TC) + hC(TC),

where gC(TC) is the average setup cost and hC(TC) the average holding cost per
time step for C given replenishment intervals TC . For the latter, consider a player
i ∈ N . Observe that in the first time step of the replenishment interval Ti, the cost
for holding player i’s entire inventory is hidiTi. In the second step it is hidi(Ti − 1),
then hidi(Ti − 2) etc. Thus, the total holding cost over the entire interval Ti is
1
2
hidiTi(Ti + 1), and for the average cost per time step we obtain

hidiTi(Ti + 1)

2Ti
=

1

2
hidiTi +

1

2
.

In accordance with [13] and [23], we omit the constant term, use the shortcuts
Hi = 1

2
hidi for all i ∈ N and get

hC(TC) =
∑
i∈C

HiTi.

The average setup cost gC is the sum of all possible setup costs multiplied by the
frequency with which the corresponding order occurs. Formally, fix some combination
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of replenishment intervals TC = (Ti)i∈C ∈ T L
C and a permutation π = (π1, . . . , π|C|)

of C that orders the intervals non-decreasingly:

Tπ1 ≤ · · · ≤ Tπ|C|

Now, since for every 1 ≤ i ≤ |C| there is an m with Tπi = 2mL we have for all
1 ≤ j < i an y < m with Tπj = 2yL . So retailer πj orders 2m−y times as often as πi
and when πi orders the pth time, πj orders the (2m−y · p)th time. Importantly, when
πi orders, all πj with 1 ≤ j < i order as well.

The frequency of retailers {π1, . . . , πi} ordering is 1
Tπi

. Consequently, the frequency

of {π1, . . . , πi} ordering when πi+1 does not order is 1
Tπi
− 1

Tπi+1
(with the convention

that 1
Tπ|C|+1

= 0). Now we can write down the average setup cost, which is

gC(TC) =

|C|∑
i=1

p ({π1, . . . , πi})
(

1

Tπi
− 1

Tπi+1

)

=

|C|−1∑
i=1

(
1

Tπi
p ({π1, . . . , πi})−

1

Tπi+1

p ({π1, . . . , πi})
)

+

1

Tπ|C|

p
({
π1, . . . , π|C|

})
=

|C|−1∑
i=1

1

Tπi

(
p ({π1, . . . , πi})− p ({π1, . . . , πi−1})

)
+

1

Tπ|C|

p
({
π1, . . . , π|C|

})
+

1

Tπ|C|

p
({
π1, . . . , π|C|−1

})
=

|C|∑
i=1

1

Tπi

(
p ({π1, . . . , πi})− p ({π1, . . . , πi−1})

)
Comparing the formula for gC(TC) with our discussion of linear optimization over

polymatroids from section 2.4, we can see similarities: Consider a linear maximization
task where the weight per element i ∈ C is 1

Ti
. Writing xi = p({π1, . . . , πi}) −

p({π1, . . . , πi−1}), we can see that gC(TC) is the optimal value of maximizing the

function f : R
|C|
+ → R, f(x) =

∑|C|
i=1

1
Ti
xi over the polymatroid base polytope of p

restricted to C, which is

B(p)|C =
{
x ∈ R|C|+

∣∣∣ x(X) ≤ p(X) ∀X ⊆ C, x(C) = p(C)
}
.

But note that if x ∈ B(p)|C , then x′ ∈ R|N |+ with

x′n =

{
xn if n ∈ C
0 otherwise

for all n ∈ N satisfies x′ ∈ P (p). Furthermore, if x maximizes f over B(p)|C , then

x′ maximizes f ′ : R
|N |
+ → R, f(x) =

∑|C|
i=1

1
Ti
xi over P (p), since any component not

in sat(x′) does not affect the function value of f ′. So we can rewrite gC(TC) as

gC(TC) = max
x∈P (p)

∑
i∈C

(
xi
Ti

)
.

We summarize the discussion so far in the following definition:
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Definition 4.7 (Joint replenishment game)
A joint replenishment game (with power-of-two reorder policies) consists of
a tuple ΓJRG = (N, (di)i∈N , (hi)i∈N , p : 2N → R+,L ) with retailers (players)
N = {1, . . . , n}, demands di ∈ R>0 and holding costs hi ∈ R>0 per player, setup
costs given by a polymatroid rank function p and a base planning period L .

The cost function of the game is given by

c(C) = min
(Ti)i∈C∈TL

C

max
x∈P (p)

∑
i∈C

(
xi
Ti

+HiTi

)
for coalitions C ⊆ N .

Observe that calculating the cost for a coalition involves optimizing over a
polymatroid. This will be the key insight to prove that the joint replenishment game
is, like the bankruptcy game, convex. Thus, efficiently calculating a core allocation of
the joint replenishment game is possible using Theorem 2.15, provided the individual
costs c(C) can be computed efficiently. We will see that this is also the case.

To prove convexity of the joint replenishment game, we need another theorem
first: Theorem 4.8 implies that the objective function (i.e., the objective value as
a function of the set to optimize for) of maximizing a concave separable function
over a polymatroid is submodular. Thus, if the valuation function of a cooperative
game is given, for each coalition, by a concave separable optimization problem over
a polymatroid, then the game is convex.

Theorem 4.8 (Theorem 3 in [13])
Let N be a finite set, p : 2N → R+ a polymatroid rank function and P (p) the
associated polymatroid polytope over N . Also, let fi : R→ R be concave functions
for 1 ≤ i ≤ |N |. Now, define for each C ⊆ N the optimization problem

h(C) = max
x∈P (p)

∑
i∈C

fi(xi).

Then the function of optimal values h : 2N → R is submodular.

Proof (Sketch)
The authors in [13] first prove an analogous result for linear maximization over a
polymatroid. They use that to prove the property from equation 2.1 for h and
any two sets A,B ⊆ N . Let xA∪B, xA∩B be optimal solutions of the optimization
problems h(A∪B) and h(A∩B). Now construct a family of linear functions f̂i that
coincide with fi at xA∪Bi and xA∩Bi . Note that the concavity of fi implies that fi lies
above f̂i in the range between xA∪Bi and xA∩Bi .

Denote by ĥ : 2N → R the function of optimal values of the optimization problems
where all fi are replaced by their counterparts f̂i. Also, denote by }̂ and } similar
functions, where only elements in the interval from xA∪B to xA∩B can be feasible
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solutions. By the aforementioned analogous result, ĥ and }̂ are submodular. The
claim follows, because

h(A) + h(B) ≥ }(A) + }(B) ≥ }̂(A) + }̂(B) ≥
}̂(A ∪B) + }̂(A ∩B) ≥ h(A ∪B) + h(A ∩B),

where the last inequality follows because the solutions xA∪B and xA∩B are in that
interval and there, ĥ coincides with h. See [13] for the rigorous argument. �

Theorem 4.9 (Theorem 5 in [13])
The joint replenishment game is convex, i.e., its cost function is submodular.

Proof
It is shown in [23] and [7], that the value of c(C) remains the same when changing
the optimization order, so

c(C) = max
x∈P (p)

∑
i∈C

min
Ti∈TL

(
xi
Ti

+HiTi

)
.

By Theorem 4.8, we need to show that minTi∈TL

(
xi
Ti

+HiTi

)
is concave in xi.

But this is clear, since xi
Ti

+HiTi is linear in xi for each Ti and minimizing over all
possible Ti gives a concave function. Thus, we are done. �

From the proof of Theorem 4.9 we get that computing c(C) is equivalent to
maximizing a separable concave function over a polymatroid. From section 2.5
we know that this is efficiently possible using the decomposition algorithm in [11].
Therefore, we can efficiently compute a core allocation of the joint replenishment
game using Theorem 2.15.

4.4 Sensitivity analysis: Recomputing core

allocations

We now turn towards the following question: given a core allocation for a cooperative
game, can we quickly adjust the allocation after changes to the game parameters
occurred so that the resulting vector is still in the core? For convex games, we know
that a core allocation can be computed in linear time. Therefore, we would like to
know whether there are special cases where recomputing the core allocation requires
only constantly many steps.

Example 4.10
Recall Example 4.5. There, we had a bankruptcy scenario with parameters E =
1 000 000e, d1 = 300 000e, d2 = 200 000e, d3 = 700 000e and d4 = 200 000e. We
calculated a core allocation x with x1 = 0e, x2 = 100 000e, x3 = 700 000e and
x4 = 200 000e.

Now imagine the estate of the bankrupt firm turned out to be larger than orig-
inally thought, so Ē = E + 100 000e. This increases the benefit for coalitions
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{1, 2}, {1, 2, 3}, {1, 2, 3, 4} but not for {1}. Therefore, a core allocation x̄ for the modi-
fied scenario can be obtained from the previous allocation by setting x̄2 = x2+100 000e
and x̄1 = x1, x̄3 = x3, x̄4 = x4.

If, on the other hand, the claim of some creditor happened to be overstated, e.g.
d̄3 = d3 − 100 000e, this may increase the benefit for coalitions that creditor 3 is not
a member of, namely {1}, {1, 2}. Here, only v({1, 2}) increases, so we can recompute
the core allocation with x̄2 = x2 +100 000e, x̄3 = x3−100 000e and x̄1 = x1, x̄4 = x4.

Generalizing from this example, we want to find cost or benefit functions of convex
games in some parameters such that changes to a parameter result in equal changes
to the function values of consecutive coalitions. We formalize these requirements in
the following definition:

Definition 4.11 (Consecutive changes)
Let N be a finite set of size |N | = n and for a permutation π = (1, . . . , n) of N
write Cπ

i = {1, . . . , i} for all 1 ≤ i ≤ n and Cπ
0 = ∅.

We say that a normalized, monotone and sub- or supermodular function
fd : 2N → R+ in parameters d = (d1, . . . , dl) ∈ Rl allows for consecutive changes
if for some permutation π of N and all parameters d the following conditions
hold: if d̄ = d± χj for some 1 ≤ j ≤ l, then either fd̄ = fd or there exist α ∈ R+

and indices 1 ≤ pj ≤ qj ≤ n so that

fd̄(C
π
i ) =

{
fd(C

π
i ) if i < pj or qj < i

1.) fd(C
π
i ) + α or 2.) fd(C

π
i )− α if pj ≤ i ≤ qj

for all 1 ≤ i ≤ n and additionally

fd(C
π
qj+1)− fd(Cπ

qj
) ≥ α if qj < n in case 1.)

fd(C
π
pj

)− fd(Cπ
pj−1) ≥ α in case 2.)

The first condition requires that changing parameter j affects the consecutive
coalitions Cπ

pj
, Cπ

pj+1, . . . , C
π
qj

equally. The additional conditions ensure monotony
after the parameter change. For example, if fd(C

π
pj

)− fd(Cπ
pj−1) < α in case 2, we

would have fd̄(C
π
pj

) < fd̄(C
π
pj−1), so fd̄ would not be monotone.

Now assume a family of functions fd satisfies the conditions in Definition 4.11
and a core allocation x of the associated convex game was calculated for parameters
d and a permutation π according to the formula in Theorem 2.15. After a change of
parameters d̄ = d± χj for some 1 ≤ j ≤ l, a core allocation x̄ can be calculated as

x̄i = xi +


α if i = pj in case 1.) or i = qj + 1 in case 2.)

−α if i = pj in case 2.) or i = qj + 1 in case 1.)

0 otherwise

for all 1 ≤ i ≤ n. Note that computing the core allocation using Theorem 2.15
requires a number of operations linear in |N |. In contrast, recomputing x̄ using the
formula above requires at most two changes to the components of x.
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Example 4.12
Consider a cooperative cost game where every player i ∈ N is assigned a parameter
di ∈ N+ and the cost of a coalition is the maximum di among members of the coalition
(possibly scaled by a constant). Thus, for a constant α ∈ R+,

cd(C) = αmax
i∈C
{di}

for all C ⊆ N . Note that cd is normalized, monotone and submodular. Also,
Definition 4.11 applies to this family of cost functions: Consider an increase of
player j’s parameter, d̄j = dj + 1. Then the cost for coalitions where dj was maximal
is increased by α. Note that when d̄j is increased again, the costs may change for
other coalitions. In terms of the definition above, the indices pj, qj may be different
on repeated increases.

Similarly, when player j’s parameter decreases, d̄j = dj − 1, the cost of coalitions
where dj was maximal and d̄j is still maximal is reduced by α.

Example 4.13
Definition 4.11 applies to bankruptcy games, too. Assume d̄j = dj + 1 for a player
j ∈ N (again, the case d̄j = dj − 1 is similar). Then pj is the lowest index in the
permutation π such that j /∈ Cπ

pj
and E −

∑
i∈N\Cπpj

di ≥ 1. Furthermore, qj is the

highest index such that j /∈ Cπ
qj

. These indices need not exist (for example, if j is the
first entry in π). Then the cost for all coalitions remains the same.

Now assume there is a change to the estate Ē = E + 1 (once more, Ē =
E − 1 follows similarly). Then qj = n and pj is the lowest index in π such that∑

i∈N\Cπpj
di ≤ E.

We can generalize the benefit function of the bankruptcy game to obtain more
functions to which Definition 4.11 applies. Consider the following classes of functions
in player-specific parameters d = (d1, . . . , dn) ∈ Nn

+:

gd : 2N → R+, gd(C) =
∑
i∈C

fi(di) for component functions fi : N→ R+

hd : 2N → N, hd(C) = min{
∑
i∈C

di, γ} for γ ∈ N

gd and hd are clearly normalized and monotone. The functions gd are in fact modular,
cf. section 2.1, which implies both sub- and supermodularity: changes to dj affect
all coalitions with j ∈ C equally. For hd, submodularity can be shown similarly to
Lemma 4.6. Intuitively, hd are modular up to a “cut-off” at γ. Because of this cut-off,
adding an element to a smaller coalition always increases the function value at least
as much as adding it to a larger coalition. Thus, submodularity is also guaranteed
for hd.

Definition 4.11 also applies to gd and hd: Fix a permutation π of N , compute a
core allocation for parameters d and then consider d̄j = dj + 1. For gd, qj = n and
pj is the lowest index such that j ∈ Cπ

pj
. For hd, pj is defined the same way, unless∑

i∈Cπpj
di ≥ γ, in which case the allocation does not change at all. The index qj is

also defined as before, unless
∑

i∈N di ≥ γ, in which case qj is the highest index such
that

∑
i∈Cπqj

di < γ.
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So far, all presented functions fulfilling Definition 4.11 depended on one parameter
per player. We will now introduce a game where the relationship between parameters
and players is a bit more intricate. Efficiently recomputing core vectors will also be
possible. The game is inspired by weighted coverage functions, which are mentioned
in [15].

The game can be described intuitively as follows: A group of people want to buy
a customizable product, e.g. an expensive machine. They do not need more than
one machine in total, but all have different customization requirements. In other
words, there is a finite set of machine features F that may be chosen as customization
options, each of which has an associated price wf ∈ R+ for f ∈ F . Player i ∈ N
requires a set of features Fi ⊆ F , which they expect the purchased machine to have.
When a group of players orders together, they pay for each requested feature only
once. After the purchase, the total cost of the order shall be allocated fairly among
players. Such an allocation is in the core of the following cooperative game:

Definition 4.14 (Coverage game)
Let N be a finite set of |N | = n players and F a finite set of |F | = m features and
F1, . . . , Fn ⊆ F subsets for each player. Furthermore, let w = (w1, . . . , wm) ∈ RF

+

be prices per feature and define a function c : 2N → R+,

c(C) =
∑

f∈∪i∈CFi

wf

for all C ⊆ N . Then the cooperative cost game Γcv = (N, c) is called a coverage
game.

Lemma 4.15
The coverage game is convex, i.e., its cost function is submodular.

Proof
Let S ⊆ L ⊆ N and i ∈ N \ L. For the cost function of the coverage game we need
to show

c(S ∪ {i})− c(S) ≥ c(L ∪ {i})− c(L).

Notice that for any C ⊆ N , it holds that c(C ∪ {i}) − c(C) is the sum of
weights of all f ∈ Fi that are not also elements of some Fj for j ∈ C, thus
c(C ∪ {i}) − c(C) =

∑
f∈Fi\(∪j∈CFj) wf . Furthermore, note that since S ⊆ L also

∪j∈SFj ⊆ ∪j∈LFj. Altogether we get

c(S ∪ {i})− c(S) =
∑

f∈Fi\(∪j∈SFj)

wf ≥
∑

f∈Fi\(∪j∈LFj)

wf = c(L ∪ {i})− c(L).

�

We can identify the feature sets per player with their corresponding characteristic
vectors and write them as rows of a matrix. That way, we obtain a matrix M ∈
{0, 1}N×F where Mif = 1⇔ f ∈ Fi. Thus, the parameters of a coverage game are
the price vector w and the matrix M .

We can now see that the cost function of the game fulfills Definition 4.11: changes
to a price wf affect the first player in a permutation that has feature f in their
feature set. Formally, fix parameters w,M and a permutation π = (1, . . . , n) of N
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and calculate a core allocation x for that scenario using Theorem 2.15. Now consider
a change in parameters w̄ = w + αχf for some f ∈ F, α > 0 (the case of price
reductions is done similarly). Then a new core allocation x̄ is obtained by

x̄i =

{
xi + α if i = min {j | f ∈ Fj}
xi otherwise

for all 1 ≤ i ≤ n.
Changes to a feature set of a player k can be F̄k = Fk ∪ {f} if f /∈ Fk or

F̄k = Fk \ {f} if f ∈ Fk for some f ∈ F . In terms of the aforementioned matrix,
this corresponds to M̄kf = Mkf ± 1. We focus on the case Mkf = 1 (and so
M̄kf = Mkf − 1 = 0) and note that the opposite case can be dealt with similarly.
This change affects player k if they are the first in a permutation to have f in their
feature set and - provided k is affected - another player who is second to have f in
their feature set. Formally, for all 1 ≤ i ≤ n,

x̄i =


xi − wf if i = k and k = min {j | f ∈ Fj}
xi + wf if i > k and k = min {j | f ∈ Fj} and i = min {j > k | f ∈ Fj}
xi otherwise

The cost function of the coverage game is somewhat different from the functions
we saw before: it can not be separated by parameters per player, because a parameter
Mif = 1 or Mif = 0 may or may not influence the cost for a coalition depending on
whether there is another player in the coalition that has f in their feature set. The
modular functions gd and the coverage game cost functions are similar, however, in
that they contain coalition dependent sums over parameters. This observation may
be useful to prove a characterization of all functions that Definition 4.11 applies to,
though we have not found such a characterization yet.

There are, of course, also convex games that do not allow for recomputing core
allocations through consecutive changes. We conclude this section by showing that
the cost function of the joint replenishment game does not possess the property from
Definition 4.11.

Example 4.16
Consider a joint replenishment scenario involving two retailers, N = {1, 2}, that
have demands d1 = 1, d2 = 2 and holding costs h1 = 4, h2 = 5, therefore H1 = 2 and
H2 = 5. The function of joint setup costs p is given by p({1}) = 4, p({2}) = 5 and
p({1, 2}) = 8.

Now fix the permutation π = (1, 2) of N . We have for the costs per coalition

c({1}) = min
T1∈TL

max
0≤x1≤4

x1

T1

+ 2T1 = 6,

c({1, 2}) = min
(T1,T2)∈TL

{1,2}

max
0≤x1≤4,
0≤x2≤5,

0≤x1+x2≤8

x1

T1

+ 2T1 +
x2

T2

+ 5T2 = 15,

where for the first optimization problem, the optimal solution is obtained with x1 =
4, T1 = 1 and for the second: x1 = 4, T1 = 1, x2 = 4, T2 = 1. Therefore, a
core allocation y for this scenario can be computed as y1 = c({1}) − 0 = 6 and
y2 = c({1, 2})− c({1}) = 9.
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Now consider a decrease of the holding costs for player 1, so h̄1 = h1− 2 = 2 and
H̄1 = H1 − 1 = 1. The new costs per coalition are

c̄({1}) = min
T1∈TL

max
0≤x1≤4

x1

T1

+ 1T1 = 4,

c̄({1, 2}) = min
(T1,T2)∈TL

{1,2}

max
0≤x1≤4,
0≤x2≤5,

0≤x1+x2≤8

x1

T1

+ 1T1 +
x2

T2

+ 5T2 = 13.5,

where the optimal solution of the first problem is obtained through x1 = 4, T1 = 2 and
for the second: x1 = 3, T1 = 2, x2 = 5, T2 = 1.

Note that c̄({1}) = c({1}) − 2 and c̄({1, 2}) = c({1, 2}) − 1.5. From this we
obtain a new core allocation ȳ with ȳ1 = 4 and ȳ2 = 9.5. The function values for
the consecutive coalitions {1} and {1, 2} have changed by different amounts. We
conclude that there are parameter changes for the joint replenishment game that do
not cause consecutive changes and therefore Definition 4.11 does not apply to that
game’s cost function.



Chapter 5

Conclusion

This thesis has dealt with polymatroid optimization and its applications to game
theory. We have introduced sub- and supermodular functions and looked at their
importance in matroid and polymatroid theory. Furthermore, we studied linear
and convex separable optimization problems over these structures. Additionally, we
looked at applications of (poly-)matroid properties to cooperative and non-cooperative
games. In doing so, we placed an emphasis on applying results from sensitivity
analysis for polymatroid optimization. Finally, we showed how the polymatroid
structure of certain cooperative games can be exploited to recompute core vectors
with a constant number of changes to their components.

We have, of course, surveyed only a fraction of the available literature on the topics
covered. In particular, there is a large body of research into the joint replenishment
problem and its variations (for an overview, see [14]). A generalization of joint
replenishment called the “one warehouse multiple retailers game” may be of special
interest, as it is also shown by He et al. to be convex (see [13]), thus allowing efficient
computation of core allocations.

Braess paradox and Wardrop equilibria in flow networks constitute another widely
studied research area. A summary of results is given, for instance, in [10] and [19].

There are also open questions regarding the problem covered in section 4.4. Firstly,
one could look for other functions that comply with Definition 4.11. All examples
covered in section 4.4 allow for recomputing allocations regardless of the permutation
that was used to calculate the initial core vector. One could try to find a game
where only the core vector obtained from a specific permutation has the consecutive
changes property. Secondly, it would be interesting to find a characterization of
functions that fulfill the constraints of Definition 4.11. The examples from section
4.4 suggest that the characterization will likely be similar to modular functions.

In conclusion, we hope to have given an accessible introduction into an active
research area. The problems presented in this thesis are actively studied, as is evident
by the number of recent publications (e.g. [13],[10],[12]) and more findings can be
expected.
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